
Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 1 of 313 1-888-824-4184

®

The fido1100

®
 User Guide

for the 32-Bit Real-Time Communications Controller

®

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 2 of 313 1-888-824-4184

®

 Copyright 2009 by Innovasic Semiconductor, Inc.
Published by Innovasic Semiconductor, Inc.

3737 Princeton Drive NE, Suite 130, Albuquerque, NM 87107

fido®, fido1100®, and SPIDER are trademarks of Innovasic Semiconductor, Inc.
I2CÊ Bus is a trademark of Philips Electronics N.V.
Motorola® is a registered trademark of Motorola, Inc.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 3 of 313 1-888-824-4184

®

TABLE OF CONTENTS

List of Figures ..8

List of Tables ...9
Conventions ...15
Nomenclature ...16
Safety Information ...17
Preface..18

1. Introduction to fido1100 Architecture ..19
1.1 Features ...19
1.2 Architectural Overview ...20

1.2.1 Core CPU ..20
1.2.2 Memory Management ...21
1.2.3 External Bus Interface ..21
1.2.4 PMU/UIC/CPU DMA ..22

1.2.5 Internal Peripherals ...22
1.2.6 JTAG/Debug ...22

1.3 Programming Model ...23
1.3.1 CPU32 Instruction Set Compatible ..23
1.3.2 Memory-Mapped Address Space ...23

2. Programmer Reference Overview ..25
2.1 User Guide Structure ...25

2.2 Chapter Overview ...26
3. Context Architecture ...27

3.1 Introduction ...27
3.2 Context Types and Operational Modes ...28

3.2.1 Standard Context ..28
3.2.2 Fast-Vectored Context ..28
3.2.3 Fast Single-Thread Context ..30

3.3 Master Context ..31
3.4 Summary ...32

4. Core CPU ..33

4.1 Overview ...33
4.2 Address and Data Space ..33
4.3 Register Model ..34

4.3.1 Data Register Operands ..35

4.3.2 Address Register Operands ...36
4.3.3 Operands in Memory ..36

4.4 User/Supervisor Space ..36

4.5 Instruction Set Summary ...36
4.5.1 Data Movement Instructions ...37
4.5.2 Integer Arithmetic Operations ..37

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 4 of 313 1-888-824-4184

®

4.5.3 Logic Instructions ...38
4.5.4 Shift and Rotate Instructions ..38

4.5.5 Bit Manipulation Instructions ...38
4.5.6 Binary-Coded Decimal Instructions ...38
4.5.7 Program Control Instructions ...39
4.5.8 System Control Instructions ...39
4.5.9 Power Control Instructions ...39

4.5.10 Modifications to CPU32 Instruction Compatibility39
4.5.11 New Instructions ...40

4.6 Interrupts, Faults and Exceptions ..40
4.6.1 Overview ...40

4.6.2 External Interrupts ..41
4.6.3 Interrupt Priorities and Control ...43
4.6.4 Interrupt, Fault and Exception Handling ..45

4.6.5 Summary ...49
4.7 Reset Processing ..56

4.8 Context Management ..60
4.8.1 Overview ...60
4.8.2 Master Context ..61

4.8.3 Context Priorities ..61
4.8.4 Context Modes ..62

4.8.5 Context States ...62
4.8.6 Contexts and Interrupts ...64
4.8.7 Context Timers..64

4.8.8 Context Initialization ..65

4.8.9 Context Claim Registers ...66
4.8.10 Software Interrupt Control and Actuation Registers67
4.8.11 Context Management Registers ..68

4.8.12 Context Control Register ..68
4.8.13 Context Timer Enable Register ..69
4.8.14 Context Timer Register ...71

4.8.15 Context Maximum Time Register ..72
4.8.16 Context Timer Clear Register ...73
4.8.17 Context Idle Timer Register ...74
4.8.18 Context Claim Register Set ..74
4.8.19 Software Interrupt Register Set ..77

4.8.20 Software Interrupt Control Register ...77
4.8.21 Software Interrupt Actuation Register ..78

5. Memory Management and Protection ..79
5.1 Overview ...79
5.2 The fido1100 Internal Memory and Registers ..79
5.3 Internal SRAM ..79

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 5 of 313 1-888-824-4184

®

5.4 Internal Relocatable Rapid Execution Memory ..80
5.5 Re-Mapping Example ...81

5.6 Endian Mode Control ..82
5.7 Definitions ...82
5.8 MOVEC Access-Based Registers ...83
5.9 Source Function Code Register (0x000) ...84
5.10 Destination Function Code Register (0x001) ..85

5.11 User Stack Pointer Register (0x800) ...85
5.12 Vector Base Register (0x801) ...86
5.13 Configuration Access Control Register (0xFFE) ..86
5.14 Memory Base Offset Register (0xFFF) ...87

5.15 Memory and Register Group Address Map ..87
5.16 Memory Protection Unit ..90
5.17 MPU Block Control Base Register ...91

5.18 MPU Block Control Attributes Register ...91
5.19 CTX MPU Allocation Registers ...92

5.20 MPU Example ...93
5.21 Programmable Chip Select Registers ..94
5.22 Complete Register Address Map ...95

6. External Bus Interface ..129
6.1 Address and Data Bus ...130

6.2 External Bus Chip Select Control and Timing Registers ..131
6.2.1 External Bus Chip Select Control Register_N (where N=0..7)131
6.2.2 External Bus Chip Select Timing Register_N (where N=0..7)134

6.3 External Bus Default Timing Register ..136

6.4 External Bus Priority Register ...137
6.5 SDRAM Controller Registers ...137

6.5.1 SDRAM Timing Parameter 0 Register ...138

6.5.2 SDRAM Timing Parameter 1 Register ...140
6.5.3 SDRAM Configuration 0 Register ...140
6.5.4 SDRAM Configuration 1 Register ...142

6.5.5 SDRAM External Bank Configuration Register_N (where N=0..7)143
6.6 Startup and Operation of SDRAM Controller ...144

6.6.1 Initial Setups ...144
6.6.2 Setups for SDRAM Controller Examples...147

6.7 SDRAM Module Types Address Mapping (16-Bit Bus Width)148

6.8 SDRAM Module Types Address Mapping (8-Bit Bus Width)149
6.9 SDRAM External I/O Signal List ...149

6.10 External Bus Arbitration ...149
7. Peripheral Management Unit ..151

7.1 PMU ..151
7.1.1 Overview ...151

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 6 of 313 1-888-824-4184

®

7.1.2 Interrupts ...156
7.1.3 PMU Registers ..159

7.1.4 PMU Usage ...168
7.1.5 Buffer Access Modes ..169
7.1.6 Packet Size Insertion ...172

7.2 Universal I/O Controller (UIC) ...172
7.2.1 Overview ...172

7.2.2 UIC GPIO Registers ...173
7.2.3 UIC Configuration Registers ..180
7.2.4 UIC Interrupt Registers ...184
7.2.5 UIC Programming ..185

7.2.6 UIC Sleep Mode ...186
7.3 DMA (Direct Memory Access Controllers) ..187

7.3.1 Overview ...187

7.3.2 DMA Registers ...188
7.3.3 DMA Setup ...193

7.4 MAC Filter ..194
7.4.1 MAC Filter Overview ...194
7.4.2 MAC Filter Registers ..196

7.4.3 MAC Filter RAM organization for HASH Table Mode199
7.4.4 MAC Filter Setup ...199

8. Internal Peripherals ...201
8.1 System Timer ...201

8.1.1 Overview ...201

8.1.2 System Timer Interrupt Calculation ..203

8.1.3 System Timer Registers ..204
8.1.4 System Timer Setup ..206

8.2 Watchdog Timer ..207

8.2.1 Overview ...207
8.2.2 Watchdog Timer Registers ..208
8.2.3 Watchdog Timer Setup..209

8.3 Timer Counter Units ..210
8.3.1 Overview ...210
8.3.2 TCU Timing Calculation ..213
8.3.3 Timer Counter Unit Registers ...214
8.3.4 TCU Setup ..221

8.4 Analog-to-Digital Converter ...222
8.4.1 Overview ...222

8.4.2 ADC Registers ..224
8.4.3 ADC Setup ..227

9. Debug Features ...229
9.1 Overview ...229

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 7 of 313 1-888-824-4184

®

9.1.1 Context Awareness ..229
9.1.2 Breakpoints, Watchpoints, and Tracing ..229

9.1.3 Examples ...230
9.1.4 Summary ...230

9.2 JTAG ...230
9.3 Debug Feature Associated Registers ...231

9.3.1 Software Breakpoint Instruction ...232

9.3.2 S/W BKPT ..233
9.4 Hardware Breakpoints and Watchpoints ...233

9.4.1 Watchpoint Block Size and Break/Watch Mode Control Register234
9.4.2 Breakpoint and Watchpoint Chaining ..236

9.4.3 Breakpoint Address/Watchpoint Base Address Register236
9.4.4 Watchpoint Data Register ...237
9.4.5 Watchpoint Data Mask Register ...237

9.5 Trace Capability ..238
9.5.1 Instruction Tracing Mode ...240

9.5.2 Trace Buffer Mode ...241
9.6 Debug Feature Examples ..242

10. Power Control ...247

10.1 Overview ...247
10.2 Power-Saving Modes ..247

10.3 Detailed Register Definition ..252
10.3.1 Power-On Reset Register ..252
10.3.2 Clock Mask Register ...253

11. Access-Controlled Registers ...255

11.1 Overview ...255
11.2 Configuration Access Control Register ...255

12. Register Map Reference ...257

13. Revision History ...312
14. For Additional Information ...313

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 8 of 313 1-888-824-4184

®

LIST OF FIGURES

Figure 1-1. Diagram of the fido1100 Communications Controller ..21

Figure 3-1. Standard Microprocessor, Single Context View ..27
Figure 3-2. The fido1100 Multi-Context View...29
Figure 3-3. Context Types and State Transitioning ..30
Figure 3-4. Context Interrupt Overhead..31
Figure 4-1. Context and Interrupt Priority Processing ..44

Figure 4-2. Sample System ...63
Figure 5-1. The fido1100 Internal Memory and Registers ...80
Figure 7-1. Diagram of the Dual-Port Receive RAM ...152

Figure 7-2. Diagram of the Dual-Port Transmit RAM ...153
Figure 7-3. Diagram of PMU Interrupts ...157
Figure 8-1. System Timer ...201
Figure 8-2. Watchdog Timer ...207

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 9 of 313 1-888-824-4184

®

LIST OF TABLES

Table 4-1. External Hardware Signals ..41

Table 4-2. Interrupt óNô Control Registers (where N=0..7) ..42
Table 4-3. Status Register ...43
Table 4-4. Short Format Stack Frame Offset Word Format/Vector ..46
Table 4-5. Instruction Error Stack Frame Offset Word Format/Vector ...47
Table 4-6. Trace Exception Instruction Error Generation ...52

Table 4-7. Faulted Context Register ...56
Table 4-8. Exception Vector Table ...57
Table 4-9. Sample Context Control Register ..62

Table 4-10. Description of Context Timers Registers ..64
Table 4-11. Description of Context Claim Register ...66
Table 4-12. Example of Context Claim Register Implementation ...66
Table 4-13. Description of Software Interrupt Control and Actuation Registers67

Table 4-14. Description of Context Management Registers ...68
Table 4-15. Context Control Register ...68

Table 4-16. Context Timer Enable Register ...70
Table 4-17. Context Timer Counter Register ...72
Table 4-18. Context Maximum Time Register ...73

Table 4-19. Context Timer Clear Register ..73
Table 4-20. Context Idle Timer Register ..74

Table 4-21. Context Claim Priority Inheritance Register ...74
Table 4-22. Pending Contexts Register ..75

Table 4-23. Claim Register ...75
Table 4-24. Claim Register Example ..76

Table 4-25. Software Interrupt Control Register ..77
Table 4-26. Software Interrupt Actuation Register ...78
Table 5-1. Relocatable RAM Control Register...81

Table 5-2. Example of Re-Mapping Relocatable RAM Memory ...81
Table 5-3. Word Write Operation Example (Original Data in Register 1 = 0x1234)83
Table 5-4. Long-Word Write Operation Example (Original Data in Register 1 = 0x12345678) .83

Table 5-5. Summary of MOVEC Access-Based Registers ..84
Table 5-6. Source Function Code Register ...84
Table 5-7. Destination Function Code Register ..85
Table 5-8. User Stack Pointer Register ...85

Table 5-9. Vector Base Register ...86
Table 5-10. Configuration Access Control Register ...86
Table 5-11. Memory Base Offset Register ...87

Table 5-12. Memory and Register Group Address Map Table ..88
Table 5-13. Memory Protection Units ..90
Table 5-14. MPU Block Control Base Register..91

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 10 of 313 1-888-824-4184

®

Table 5-15. MPU Block Control Attributes Register ...91
Table 5-16. Value and Block Sizes ...92

Table 5-17. CTX MPU Allocation Register ...93
Table 5-18. Example of MPU Data Space ..93
Table 5-19. Example of MPU Protection ...94
Table 5-20. Complete Register Address Map Table ...95
Table 6-1. External Bus Interface Signal List ...130

Table 6-2. External Bus Chip Select Control Register..131
Table 6-3. Chip Select Timing Register ..134
Table 6-4. External Bus Default Timing Register ..136
Table 6-5. External Bus Priority Register ...137

Table 6-6. Registers Used to Program the SDRAM Controller ..138
Table 6-7. SDRAM Timing Parameter 0 Register ..139
Table 6-8. SDRAM Timing Parameter 1 Register ..140

Table 6-9. SDRAM Configuration 0 Register ..140
Table 6-10. SDRAM Configuration 1 Register ..142

Table 6-11. SDRAM External Bank Configuration Register..143
Table 6-12. SDRAM Module Types Address Mapping for 16-Bit Bus Width148
Table 6-13. SDRAM Module Types Address Mapping for 8-bit Bus Width149

Table 6-14. SDRAM External I/O Signal List ..149
Table 7-1. PMUChxy_Control ..160

Table 7-2. PMUChxy_Status ..162
Table 7-3. PMUChxy_PckXmitSize ...163
Table 7-4. PDMAChxy_PckRcvSize ..163

Table 7-5. PMUChxy_RcvFBufStart ..164

Table 7-6. PMUChxy_RcvFBufEnd ...164
Table 7-7. PMUChxy_XmitFBufStart ..164
Table 7-8. PMUChxy_XmitFBufEnd ...165

Table 7-9. PMUChxy_RcvFBufWrPtr ..165
Table 7-10. PMUChxy_RcvFBufRdPtr ..166
Table 7-11. PMUChxy_XmitFBufRdPtr ..167

Table 7-12. PMUChxy_XmitFBufWrPtr ..167
Table 7-13. PMUChxy_Xmit_Data ..168
Table 7-14. PMUChxy_Rcv_Data ..168
Table 7-15. GPIO_DIR_A ..173
Table 7-16. GPIO_DIR_B ..174

Table 7-17. PIO_DIR_C ...175
Table 7-18. GPIO_INV_A ..176

Table 7-19. GPIO_INV_B ..177
Table 7-20. GPIO_INV_C ..178
Table 7-21. GPIO_Data_A ..178
Table 7-22. GPIO_Data_B ..179

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 11 of 313 1-888-824-4184

®

Table 7-23. GPIO_Data_C ..180
Table 7-24. ConfigRegAðProgram Control ..181

Table 7-25. ConfigRegDðMaster Control Register ..182
Table 7-26. ConfigRegKðUIC Firmware ID ..183
Table 7-27. Firmware ID Codes ..184
Table 7-28. ConfigRegLðUIC Programming Checksum ..184
Table 7-29. INTERRUPT_STATUS_REG ...185

Table 7-30. INTERRUPT_MASK_REG ..185
Table 7-31. DMAChx_Control ..188
Table 7-32. DMAChx_Source ..192
Table 7-33. DMAChx_Destination ...192

Table 7-34. DMAChx_Count ..193
Table 7-35. MAC Filter Mode Configuration Register ..196
Table 7-36. MAC_Filter_Data_Write ...198

Table 7-37. MAC_Filter_Data_Read ..198
Table 7-38. MAC Filter HASH Table Partition 0 ...199

Table 7-39. MAC Filter HASH Table Partition 1 ...199
Table 8-1. Sequence Showing System Timer Interrupts_0 and _1 Enabled202
Table 8-2. Sequence Showing System Timer Interrupts_0, _1, and _2 Enabled203

Table 8-3. System Timer Control Register ...204
Table 8-4. System Timer Prescale Register ..205

Table 8-5. System Timer Interrupt Control Register ..205
Table 8-6. Watchdog Timer Control Register ...208
Table 8-7. Watchdog Timer Reload Register ..209

Table 8-8. Examples of Frequencies Generated with the Timer Counter Unit214

Table 8-9. TCUx_Status ..214
Table 8-10. TCUx_Mode ..215
Table 8-11. Default Prescaler Settings ..217

Table 8-12. Clock Mode Values ..217
Table 8-13. TCUx_Counter ...218
Table 8-14. TCUx_Chy_Mode ...218

Table 8-15. Input Capture Mode Values ...218
Table 8-16. Output Compare Mode Values ...219
Table 8-17. TCUx_Chy_Input_Capture ..220
Table 8-18. TCUx_Chy_Output_Compare ...221
Table 8-19. ADC_ControlRegister ..224

Table 8-20. ADC_StartRegister ..226
Table 8-21. ADC Data Available Register ..226

Table 8-22. ADC Channel Data Register ...227
Table 9-1. Debug-Feature Register Descriptions ..231
Table 9-2. Debug Control Register ...232

Table 9-3. Debug Control Register Definition ...232

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 12 of 313 1-888-824-4184

®

Table 9-4. Debug Breakpoint and Watchpoint Registers ...234
Table 9-5. Watchpoint Block Size and Break/Watch Mode Control Register234

Table 9-6. Breakpoint Address/Watchpoint Base Address Register ..236
Table 9-7. Watchpoint Block Size and Break/Watch Mode Control Register237
Table 9-8. Watchpoint Data Register..237
Table 9-9. Watchpoint Data Mask Register ..237
Table 9-10. Trace Control Register ..238

Table 9-11. Debug Trace Buffer Control Register ...238
Table 9-12. Trace Buffer Base Address Register ...239
Table 9-13. Call and Branch Instructions that Generate Address Strobes241
Table 9-14. Example 1 of Debug-Feature Register Implementation ..242

Table 9-15. Example 2 of Debug-Feature Register Implementation ..243
Table 9-16. Example 3 of Debug-Feature Register Implementation ..245
Table 10-1. Summary of fido1100 Power-Saving Modes ..248

Table 10-2. Power-On Reset Register ..252
Table 10-3. Clock Mask Register ...253

Table 11-1. Configuration Access Control Register ...255
Table 12-1. Interrupt óNô Control Registers (where N=0..7) ..257
Table 12-2. Faulted Context Register ...258

Table 12-3. Context Control Register ...258
Table 12-4. Context Timer Enable Register ...259

Table 12-5. Context Timer Counter Register ...260
Table 12-6. Context Maximum Time Register ...260
Table 12-7. Context Timer Clear Register ..261

Table 12-8. Context Idle Timer Register ..261

Table 12-9. Context Claim Priority Inheritance Register ...262
Table 12-10. Pending Contexts Register ..262
Table 12-11. Claim Register ...262

Table 12-12. Software Interrupt Control Register ..262
Table 12-13. Software Interrupt Actuation Register...263
Table 12-14. Relocatable RAM Control Register...263

Table 12-15. Configuration Access Control Register ...263
Table 12-16. Memory Base Offset Register ...264
Table 12-17. MPU Block Control Base Register..264
Table 12-18. MPU Block Control Attributes Register ...264
Table 12-19. CTX MPU Allocation Register ...265

Table 12-20. External Bus Chip Select Control Register ...265
Table 12-21. Chip Select Timing Register ..267

Table 12-22. External Bus Priority Register ...269
Table 12-23. SDRAM Timing Parameter 0 Register ..269
Table 12-24. SDRAM Timing Parameter 1 Register ..270
Table 12-25. SDRAM Configuration 0 Register ..270

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 13 of 313 1-888-824-4184

®

Table 12-26. SDRAM Configuration 1 Register ..272
Table 12-27. SDRAM External Bank Configuration Register ...273

Table 12-28. PMUChxy_Control ..274
Table 12-29. PMUChxy_Status ..275
Table 12-30. PMUChxy_PckXmitSize ...276
Table 12-31. PDMAChxy_PckRcvSize ..277
Table 12-32. PMUChxy_RcvFBufStart ..277

Table 12-33. PMUChxy_RcvFBufEnd ...277
Table 12-34. PMUChxy_XmitFBufStart ..277
Table 12-35. PMUChxy_XmitFBufEnd ...278
Table 12-36. PMUChxy_RcvFBufWrPtr ..278

Table 12-37. PMUChxy_RcvFBufRdPtr ..278
Table 12-38. PMUChxy_XmitFBufRdPtr ..279
Table 12-39. PMUChxy_XmitFBufWrPtr ..279

Table 12-40. PMUChxy_Xmit_Data ..279
Table 12-41. PMUChxy_Rcv_Data ..280

Table 12-42. GPIO_DIR_A ..280
Table 12-43. GPIO_DIR_B ..281
Table 12-44. PIO_DIR_C ...282

Table 12-45. GPIO_INV_A ..282
Table 12-46. GPIO_INV_B ..283

Table 12-47. GPIO_INV_C ..284
Table 12-48. GPIO_Data_A ..285
Table 12-49. GPIO_Data_B ..286

Table 12-50. GPIO_Data_C ..286

Table 12-51. ConfigRegAðProgram Control ..287
Table 12-52. ConfigRegDðMaster Control Register ..288
Table 12-53. ConfigRegKðUIC Firmware ID ..289

Table 12-54. ConfigRegLðUIC Programming Checksum ..289
Table 12-55. INTERRUPT_STATUS_REG ...289
Table 12-56. INTERRUPT_MASK_REG ..289

Table 12-57. DMAChx_Control ..290
Table 12-58. DMAChx_Source ..293
Table 12-59. DMAChx_Destination ...293
Table 12-60. DMAChx_Count ..294
Table 12-61. MAC Filter Mode Configuration Register ..294

Table 12-62. MAC_Filter_Data_Write ...296
Table 12-63. MAC_Filter_Data_Read ..296

Table 12-64. System Timer Control Register ...296
Table 12-65. System Timer Prescale Register ..297
Table 12-66. System Timer Interrupt Control Register ..297
Table 12-67. Watchdog Timer Control Register ...298

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 14 of 313 1-888-824-4184

®

Table 12-68. Watchdog Timer Reload Register ..299
Table 12-69. TCUx_Status ..299

Table 12-70. TCUx_Mode ..300
Table 12-71. TCUx_Counter ...301
Table 12-72. TCUx_Chy_Mode ...302
Table 12-73. TCUx_Chy_Input_Capture ..303
Table 12-74. TCUx_Chy_Output_Compare ...303

Table 12-75. ADC_ControlRegister ..303
Table 12-76. ADC_StartRegister ..305
Table 12-77. ADC Data Available Register ..305

Table 12-78. ADC Channel Data Register ...306
Table 12-79. Debug Control Register Definition ...306

Table 12-80. Watchpoint Block Size and Break/Watch Mode Control Register307
Table 12-81. Breakpoint Address/Watchpoint Base Address Register308
Table 12-82. Watchpoint Data Register..308
Table 12-83. Watchpoint Data Mask Register ..308

Table 12-84. Debug Trace Buffer Control Register ...309
Table 12-85. Trace Buffer Base Address Register ...310

Table 12-86. Power-On Reset Register ..310
Table 12-87. Clock Mask Register ...311
Table 13-1. Revision History ..312

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 15 of 313 1-888-824-4184

®

CONVENTIONS

Arial Bold Designates headings, figure captions, and table captions.

Blue Designates hyperlinks (PDF copy only).

Courier Designates code text.

Italics Designates emphasis or caution related to nearby information. Italics is also

used to designate variables, refer to related documents, and to differentiate terms

from other common words (e.g., ñIf the set parameter is 0, then they will be

cleared.ò).

Directory%20Structure.doc

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 16 of 313 1-888-824-4184

®

NOMENCLATURE

ADC Analog-to-Digital Converter.

CMU Context Management UnitðControls context switching based on context priorities.

DMA Direct Memory AccessðIndependent means of transferring data without CPU

intervention.

ISR Interrupt Service RoutineðCode that will be executed when an exception or

interrupt is processed. Address of ISR is obtained from exception vector table for

the executing context.

MPU Memory Protection UnitðProvides access control to blocks of memory on a

context basis.

PMU Peripheral Management UnitðThe fido1100 subsystem containing transmit and

receive frame buffers.

RREM Relocatable Rapid Execution MemoryðConfigurable internal instruction memory

used to speed up execution of critical sections of applications.

SDRAM Synchronous Dynamic RAM

SPIDER Software Profiling and Integrated Debug EnvironmentðThe fido1100 hardware

breakpoints, watchpoints, and trace features.

TCU Timer Counter Unit.

UIC Universal I/O ControllerðFirmware controlled communication protocol engines.

URAM User RAMðInternal 24 Kbyte block of RAM available for use by applications.

WDT Watchdog TimerðTimer used to prevent runaway execution.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 17 of 313 1-888-824-4184

®

SAFETY INFORMATION

DANGER Certain applications using semiconductor products may involve potential risks of

death, personal injury, or environmental damage. To minimize the risks associated

with end-user applications, adequate design and operating safeguards must be

provided by the customer to minimize inherent or procedural hazards.

WARNING Innovasic Semiconductor, Inc. (Innovasic), products are not designed, warranted,

or authorized for use in life-support devices or systems or in other critical

applications. The inclusion of Innovasic products in such applications is fully at

the customerôs risk.

WARNING Be aware of all hazards involved in handling electrical circuitry and be familiar

with practices for preventing accidents that may cause personal injury or death.

CAUTION Electrostatic discharge (ESD) can destroy or damage integrated circuits and

semiconductor devices. When working near or handling these components, ensure

that proper ESD suppression measures are taken. Additionally, do not store or ship

these components near strong electrostatic, electromagnetic, magnetic, or

radioactive fields.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 18 of 313 1-888-824-4184

®

PREFACE

This document describes the capabilities, operation, and programming of the fido1100Ê

communications controller. The organization and content of this document are as follows:

 Chapter 3, Context ArchitectureðAn introduction to the fido1100 multiple hardware

contexts concept.

 Chapter 4, Core CPUðCovers the Execution Unit, register model and data types,

exception processing, and details of the multiple hardware contexts operation.

 Chapter 5, Memory Management and ProtectionðDescription of the Memory Protection

Unit features of the fido1100 and the Relocatable Rapid Execution Memory. Introduces

the programmable Chip Select registers. Also includes a Register Map quick reference of

the fido1100, sorted by address.

 Chapter 6, External Bus InterfaceðDetails of the programmable chip-select registers and

the SDRAM Controller and its registers. Covers how external bus arbitration can be used

to connect the fido1100 on a shared address/data bus.

 Chapter 7, Peripheral Management UnitðDetails the operation and registers of the PMU

subsystem in the fido1100. Covers the transmit and receive buffer functions of the PMU.

Describes how to load a UIC with firmware. Details the two channels of DMA operation

and how to use the DMA in conjunction with the PMU to offload the CPU for data

transmit and receive functions. The MAC Filter section details the usage of the

programmable MAC address filter table.

 Chapter 8, Internal PeripheralsðDetails the System Timer, Timer Counter Units,

Watchdog Timer and Analog-to-Digital Converter in the fido1100.

 Chapter 9, Debug FeaturesðCovers the debug, trace and breakpoint features of the

fido1100. The JTAG debug interface, hardware breakpoints and watchpoints, and tracing

are illustrated by examples.

 Chapter 10, Power ControlðDescribes how to control the power to the fido1100 internal

peripherals and the LPSTOP and STOP instructions.

 Chapter 11, Access Controlled RegistersðDetails the fido1100 mechanism for limiting

access to registers or bit fields in register to the Master Context only. Access control is

used to protect sensitive fields or settings controlled by registers.

 Chapter 12, Register Map ReferenceðPresents all the fido1100 registers organized by

function peripheral with descriptions of the bit fields in the registers.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 19 of 313 1-888-824-4184

®

1. Introduction to fido1100 Architecture

Innovasic Semiconductorôs fido1100 is the first product in the fido family of real-time

communications controllers. The fido communications controller architecture is uniquely

optimized for solving memory bottlenecks, and is designed from the ground up for deterministic

processing. Critical timing parameters, such as context switching and interrupt latency, are

precisely predictable for real-time tasks. The fido1100 also incorporates the Universal I/O

Controller (UIC) that is configurable to support various communication protocols across

multiple platforms. This flexibility relieves the designer of the task of searching product matrices

to find the set of peripherals that most closely match the system interface needs. The Software

Profiling and Integrated Debug EnviRonment (SPIDER) has extensive real-time code debug

capabilities without the burden of code instrumentation.

1.1 Features

The fido1100 communications controllerôs features include:

 A real-time 32-bit microcontroller

 CISC architecture optimized for real time

 CPU32+ (Motorola® 68000) instruction-set compatible

 Five hardware contexts, each with its own register set and interrupt vector table

 An 8- or 16-bit external bus interface with programmable chip selects

 24 Kbytes of high-speed internal user SRAM

 32 Kbytes of high-speed internal user-mappable Relocatable Rapid Execution Memory

(RREM)

 A Memory Protection Unit

 An SDRAM controller

 Flat, contiguous memory space

 A non-aligned memory access

 A dedicated Peripheral Management Unit (PMU)

 Four Universal I/O Controllers (UICs) capable of supporting the following protocols:

ï GPIO

ï 10/100 Ethernet with flexible MAC Address Filtering schemes

ï EIA-232

ï CAN

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 20 of 313 1-888-824-4184

®

ï SPI

ï I
2
C Bus

ï SMBus

ï HDLC

 Two channels of full-featured direct memory access (DMA) with deterministic arbitration

 Two Timer/Counter Units (TCU)

 A Watchdog timer, system timer, and context timers

 JTAG emulation and debug interface

 Standard 208 PQFP, TQFP, and BGA packaging

 3.3V operation with 5V-tolerant I/O

 Industrial temperature grade

 Software development supported by libraries and tools including UIC firmware for various

interface protocols and formats, as well as a customized GNU tool set.

1.2 Architectural Overview

A diagram of the fido1100 communications controller is shown in Figure 1-1. Brief descriptions

of the major architectural components are provided in the following subsections.

1.2.1 Core CPU

The fido1100 includes a 32-bit CPU featuring Complex-Instruction-Set-Computer (CISC)

architecture optimized for real time. The Motorola-CPU32-instruction-set compatible CPU

contains the following subsystems:

 Execution UnitðA single unit that handles all instruction fetch and execution for all

contexts.

 Context Management UnitðHandles context priorities and when a context switch is

required.

 Exception Handling (Interrupts and Faults)ðDetermines priorities of interrupts and

handles processing of interrupts (detailed in later sections).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 21 of 313 1-888-824-4184

®

Figure 1-1. Diagram of the fido1100 Communications Controller

1.2.2 Memory Management

 Relocatable Rapid Execution Memory (RREM)ðInternal 32-Kbyte memory that can be

used as an instruction source for code that requires maximum execution speed.

 Memory Protection Unit (MPU)ðAccess-control method for 16 user-configurable blocks

of internal or external memory on a context basis. A block of memory may be

inaccessible, read only or read/write accessible to a selectable set of contexts. The MPU

provides the space partitioning needed in deterministic, real-time systems.

1.2.3 External Bus Interface

The interface to all external memory. It handles memory interface timing and arbitration of

external bus requests. The external bus interfaces provide all address, data, and control line to

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 22 of 313 1-888-824-4184

®

implement either an 8- or 16-bit microcontroller system bus. Additional details on the

characteristics, operation, and timing of the external bus interfaces are provided in Chapter 6,

External Bus Interface.

 Address/data bus

ï 31-bit address bus to access up to 2 Gbytes of memory space

ï 8- or 16-bit data bus

 Chip SelectsðEight programmable chip selects with programmable size, data width, and

timing.

 SDRAM ControllerðSupports 8- or 16-bit data interfaces to SDRAM.

 External Bus ArbitrationðThe fido1100 provides signals to allow it to operate in a multi-

bus master environment.

1.2.4 PMU/UIC/CPU DMA

The PMU, UIC, and CPU DMA work together as a fast data transport scheme that requires

minimal Core CPU overhead or intervention.

 Peripheral Management Unit (PMU)ðA set of user-configurable buffers for data

transmission and reception via the UICs.

 Universal Input/Output Controller (UIC)ðProgrammable protocol engine

 CPU DMAðTwo independent channels of DMA for data transfer

1.2.5 Internal Peripherals

The fido1100 incorporates the following set of internal peripherals:

 Two Timer Counter Units (TCU)ðAdditional details on the characteristics, operation, and

timing are provided in Section 8.3, Timer Counter Units.

 Analog-to-Digital Converter (ADC)ðThe characteristics, operation, and timing of the 10-

bit, 8-channel ADC are provided in Section 8.4, Analog-to Digital Converter.

 Power ControlðInternal peripherals can be put into a low-power consumption mode.

Detailed information can be found in Chapter 10, Power Control.

1.2.6 JTAG/Debug

The JTAG Interface is used for controlling the SPIDER (see Chapter 9, Debug Features).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 23 of 313 1-888-824-4184

®

 BreakpointsðEight hardware context-aware breakpoints that can be chained to set up

if/ then triggering conditions.

 WatchpointsðEight hardware watchpoints.

 TraceðFollow program execution with trace buffers.

 Debug ControlðHardware single-step and context status control.

 Statistical ProfilingðSPIDER provides statistical software profiling to identify critical

pieces of code.

1.3 Programming Model

1.3.1 CPU32 Instruction Set Compatible

The fido1100 supports the CPU32 instruction set with some modifications, and has some new

instructions (see Chapter 4, Core CPU, and The fido1100 Instruction Set Reference Guide for

details). The fido1100 general instruction classes include machine functions for all of the

following operations:

 Data movement

 Arithmetic operations

 Logical operations

 Shifts and rotates

 Bit manipulation

 Binary-Coded Decimal (BCD) arithmetic

 Program control

 System control

 Power control

1.3.2 Memory-Mapped Address Space

 Address and data space (31-bit address space and 32-bit data paths internally, 16-bit data

path externally)

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 24 of 313 1-888-824-4184

®

 Supports byte (8-bit), word (16-bit), long-word (32-bit), and quad-word (64-bit) operations

 Supports non-aligned accesses to memory

 Selectable little-endian or big-endian accesses to memory

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 25 of 313 1-888-824-4184

®

2. Programmer Reference Overview

2.1 User Guide Structure

This User Guide presents procedures for designing and programming a system using the fido1100

communications controller. Detailed information about the fido1100 CPU, internal peripherals,

context management, and exception processing is provided.

The guide is divided into chapters that present the following topics:

 Core CPU (Chapter 3 and Chapter 4)

ï Context Management

ï Execution Unit

ï Exception Handling (Interrupts and Faults)

 Memory Management (Chapter 5)

ï RREM (Relocatable Rapid Execution Memory)

ï MPU (Memory Protection Unit)

 External Bus Interface (Chapter 6)

ï Address/Data bus

ï Programmable Chip Selects

ï SDRAM Controller

ï External Bus Arbitration

 PMU/UIC/CPU DMA (Chapter 7)

ï PMU (Peripheral Management Unit)

ï UIC (Universal I/O Controller)

ï CPU DMA

ï MAC Filter

 Internal Peripherals (Chapter 8 and Chapter 10)

ï TCU (Timer Counter Units)

ï ADC (Analog-to-Digital Converter)

ï Power Control

 JTAG/Debug (Chapter 9)

ï Breakpoints

ï Watchpoints

ï Trace

ï Debug Control/Status Registers

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 26 of 313 1-888-824-4184

®

2.2 Chapter Overview

 Chapter 3, Context ArchitectureðAn introduction to the fido1100 multiple hardware

contexts concept.

 Chapter 4, Core CPUðCovers the Execution Unit, register model and data types,

exception processing, and details of the multiple hardware contexts operation.

 Chapter 5, Memory Management and ProtectionðDescription of the Memory Protection

Unit features of the fido1100 and the Relocatable Rapid Execution Memory. Introduces

the programmable Chip Select registers. Also includes a Register Map quick reference of

the fido1100, sorted by address.

 Chapter 6, External Bus InterfaceðDetails of the programmable chip-select registers and

the SDRAM Controller and its registers. Covers how external bus arbitration can be used

to connect the fido1100 on a shared address/data bus.

 Chapter 7, Peripheral Management UnitðDetails the operation and registers of the PMU

subsystem in the fido1100. Covers the transmit and receive buffer functions of the PMU.

Describes how to load a UIC with firmware. Details the two channels of DMA operation

and how to use the DMA in conjunction with the PMU to offload the CPU for data

transmit and receive functions. The MAC Filter section details the usage of the

programmable MAC address filter table.

 Chapter 8, Internal PeripheralsðDetails the System Timer, Timer Counter Units,

Watchdog Timer and Analog-to-Digital Converter in the fido1100.

 Chapter 9, Debug FeaturesðCovers the debug, trace and breakpoint features of the

fido1100. The JTAG debug interface, hardware breakpoints and watchpoints, and tracing

are illustrated by examples.

 Chapter 10, Power ControlðDescribes how to control the power to the fido1100 internal

peripherals and the LPSTOP and STOP instructions.

 Chapter 11, Access Controlled RegistersðDetails the fido1100 mechanism for limiting

access to registers or bit fields in register to the Master Context only. Access control is

used to protect sensitive fields or settings controlled by registers.

 Chapter 12, Register Map ReferenceðPresents all the fido1100 registers organized by

function peripheral with descriptions of the bit fields in the registers.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 27 of 313 1-888-824-4184

®

3. Context Architecture

3.1 Introduction

One way to gain a better understanding of the fido context architecture is to view it from the

perspective of a standard microprocessorð for example, a CPU32. A standard CPU32 can be

viewed as a single hardware context, with a standard set of registers. Interrupts and other

peripheral inputs are handled and processed as required by the microprocessor execution engine.

Whenever an interrupt occurs, priority/masking willing, the currently executing task is stopped,

stack operations occur, the interrupt is processed as required by the handler and the task execution

resumes.

In a multi-task software application, any task switch will have the overhead of caching and de-

caching registers for tasks to be saved/resumed. A faulting task will typically be suspended by an

OS (if one exists) or can even halt a system, requiring a reset or restart to recover the system (see

Figure 3-1).

Figure 3-1. Standard Microprocessor, Single Context View

A discussion of the fido1100 architecture implementation follows.

The fido1100 implements five independent hardware contexts. Each has its own stack, register

set, and additional registers for context control and operation. Each interrupt in the system is

ñassociatedò with a given context (details are provided in later chapters). Each context and each

interrupt has a priority mechanism used by the hardware execution unit to facilitate operation.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 28 of 313 1-888-824-4184

®

With fido, a true multi-tasking system is possible with or without an OS, and task-switching times

are greatly reduced and can be ñdeterministicò based on context type (see Section 4.8, Context

Management). No caching of registers to memory is ever needed or used to switch contexts.

In fido, a faulting event is isolated to a given context, protecting the remaining system that can

continue to run. A faulting task can be reset or quickly re-started if desired, which of course is

application dependent (see Figure 3-2).

A discussion of the different context types and their modes of operation follows.

3.2 Context Types and Operational Modes

There are three types of fido contexts: Standard, Fast-Vectored, and Fast Single-Thread (FST).

The context type determines both context behavior and switching time. Each context has an

assigned priority, can have interrupts associated with it, and includes such features as time slicing.

Although contexts can be completely isolated from one another, they can communicate and share

resources. Interrupts are inextricably coupled to contexts in that any interrupt in the system is

associated with only one context. Each context has three possible states, ready (RDY), not ready

(NOT_RDY), and halted. The fido pioneers a new ñsleepò instruction to manage these states.

The sleep instruction can change the state of any context from RDY to NOT_RDY. This

mechanism interrupts the CPU to allow another context to run (see Figure 3-3).

3.2.1 Standard Context

The standard context retains standard, single-context operational compatibility. If code is

executing in a standard context and an interrupt associated with this context occurs, the interrupt is

handled in the usual manner. The interrupt service routine address is fetched from the vector table

and if the interrupt is of higher priority than the context, the current PC and status register are

stacked then re-loaded from the vector table. The handler (which needs to PUSH/POP any

registers it uses) is then called, executes, performs an interrupt return, the PC and status register

are unstacked, and the code resumes where it left off.

3.2.2 Fast-Vectored Context

The fast context is really an interrupt handler that operates as a context. If an interrupt occurs that

is associated with a Fast Context, the PC for that context is loaded from the vector table, and

execution begins. No stack operations occur except those needed by the context itself. It runs to

completion then sleeps itself. Since a Fast Context loads the PC with the ISR address from the

vector table, any number of interrupts can be associated with a context of this type. The context

switch time for a Fast Context is only the time it takes to load the PC and begin.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 29 of 313 1-888-824-4184

®

Figure 3-2. The fido1100 Multi-Context View

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 30 of 313 1-888-824-4184

®

Figure 3-3. Context Types and State Transitioning

3.2.3 Fast Single-Thread Context

The FST context is really a single thread that operates as a context. If an interrupt occurs that is

associated with a FST context, execution begins immediately at the current PC for that context.

No vector-table access or stacking occurs. The FST type of context must be coded to terminate

using a sleep/branch combination to ensure the PC for the context is always where the context

should begin execution the next time the interrupt occurs. The context switch time for a FST

context is near single cycle. Applications for this type of context include situations where high

priority, minimal response time I/O, or high frequency events must be handled in the system (see

Figure 3-4).

RDY

NOT_RDY

HALTED

There are three context types:
1) Standard
2) Fast-Vectored
3) Fast Single-Thread

All three types transition state
in the same manner.

move

move

interrupt
or

move
sleep

or
move

On this diagram, ñmoveò
indicates only a privileged
write to the context control
register, which is a memory-
mapped register.

context
overrun with
time-slicing

disabled

context
overrun with
time-slicing

enabled

If time slicing is enabled, the
context overrun results in a
context overtime fault to the local
context (the idea is to provide
multi-thread support within a
single context, so the context
stays in a RDY state). If time
slicing is disabled, a context
overrun fault results in a fault to
the master context, and the
context that over-ran is HALTED.
More details on time-slicing in
Chapter 8, Internal Peripherals.

Interrupts are the only way a
context can go from the
NOT_RDY state to the RDY
state (except direct
intervention of Context_0).
Upon an interrupt event, the
fido execution unit resolves
the interrupt source, changes
the state of the associated
context, then resumes
execution of the highest
priority context that is in a
RDY state.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 31 of 313 1-888-824-4184

®

Figure 3-4. Context Interrupt Overhead

3.3 Master Context

Context_0 is the Master Context and it holds special powers. By default, it is the highest priority
context regardless of priority settings for other contexts. Only code running in Context_0 can
write to every fido register, including the context control register of every context. By default, the
fido powers up by running in Context_0. A recommended practice is to house all initialization
code here, set up all other contexts according to application needs, then sleep Context_0 and use it
to handle exceptions from all other contexts.

Many applications can run entirely in Context_0, which is perfectly acceptable. After Context_0,
the priorities of the other contexts are assignable through registers. However, if both Context_1
and Context_4 are assigned a priority of six for example, Context_1 will have the higher priority.

Many fido registers have access-controlled bit fields (discussed in later chapters). Only Context_0
can write to access-controlled bit fields, and only while in supervisor mode. This restriction

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 32 of 313 1-888-824-4184

®

prevents program corruptionða safety feature that keeps order (and limits chaos) in this multi-
threaded, real-time embedded application running on a very flexible machine.

3.4 Summary

There are no other real rules or restrictions for context usage, understanding the chipôs flexibility
and how it works is the key to implementing the application.

 Any or all of the five fido contexts can be used by an application.

 Unused contexts are disabled and have no affect on system operation.

 In review, contexts have three states (HALTED, RDY, and NOT_RDY). A HALTED state

will not run (that is, the hardware execution engine will bypass it for scheduling

consideration) without master Context_0 writing to the context control register or JTAG

intervention.

 When a context is done (temporarily), the SLEEP instruction is used to transition from a

RDY to the NOT_RDY state.

 All interrupts have an association to a context and a priority relative to that context.

 If a context is set up as a Fast Single-Thread context, any interrupt associated with that

context will cause the context to execute the code indicated by the contextôs PC.

 For a Fast context, any interrupt associated with that context will immediately cause the

context to execute the Interrupt Service Routine defined by the contextôs vector exception

table.

 Certain registers and the access-controlled field in all registers are writable by only the

Master Context, Context_0.

Chapters herein will discuss the use of context timers, time-slicing, memory protection, claim

registers, and the use of internal peripherals and other features of fido. These are closely related to

context management, and are typically set up by the Master Context during initialization based on

application needs. See Section 4.8, Context Management, for details.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 33 of 313 1-888-824-4184

®

4. Core CPU

4.1 Overview

The core CPU is the main computer in the chip. The fido1100 core is based on the CPU32

architecture, and is compatible with the CPU32 instruction set. Some exceptions will be listed in

this chapter. All contexts share the same Execution Unit, which is the portion of the Core CPU

that fetches, decodes, and executes instructions. However, as introduced in Chapter 3, Content

Architecture, each of the five hardware contexts in the fido1100 has its own register set. This

unique feature of fido allows it to operate as five machines in one where the application is

concerned.

The following features of the fido1100 are discussed in this section:

 Address and Data Space (32-bit address space and 32-bit data paths)

ï Byte, word (16-bit), long-word (32-bit), and quad-word (64-bit) operations

 Register Model

 User/Supervisor Space

 Instruction Set Summary

 Interrupts, Faults, and Exceptions

ï External Interrupts

ï Interrupt Priorities and Control

ï Interrupt, Fault, and Exception Handling

o Short Format Stack Frames

o Instruction Error Stack Frame

o Fault and Exception Handling

 Reset Processing

 Context Management

Other internal features of the fido1100 (the PMU, Internal SRAM, the RREM, Memory Protection

Unit [MPU], SDRAM controller, and External Bus Interface) are discussed in subsequent

chapters.

4.2 Address and Data Space

The fido1100 internal address and data bus are 32-bits wide. It supports the following data types:

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 34 of 313 1-888-824-4184

®

 Data types

ï BCDð4-bit representation (supported by certain instructions)

ï Byteð8-bit signed and unsigned representations

ï Wordð16-bit signed and unsigned representations

ï Long-wordð32-bit signed and unsigned representations

ï Quad-wordð64-bit signed and unsigned representations (supported by certain

instructions, requires a register pair to contain data)

The fido1100 supports an extensive set of addressing modes for source and destination operands

of an instruction.

 Memory addressing modes

ï DnðData Register

ï AnðAddress Register

ï (An)ðAddress Register Indirect

ï (An)+ðAddress Register Indirect with post-increment

ï -(An)ðAddress Register indirect with pre-decrement

ï (d16,An)ðAddress Register Indirect with displacement

ï (d8,An,Xn.Size*Scale)ðaddress Register indirect with displacement and scaling

ï (bd,An,Xn.Size*Scale)ðaddress Register indirect with displacement and scaling

ï (d16,PC)ðProgram Counter relative with displacement

ï (d8,PC,Xn.Size*Scale)ðProgram Counter relative with displacement and scaling

ï (bd,PC,Xn.Size*Scale)ðProgram Counter relative with displacement and scaling

ï (xxx).Wðmemory pointer

ï (xxx).Lðmemory pointer

ï #xxxðimmediate

An important fido1100 feature to be remembered is that the most significant bit (Bit [31]) of the

address is used for Endian Mode Control. This limits the fido1100 to two Gbytes of space as

opposed to four Gbytes of space. See Chapter 5, Memory Management and Protection, for details

on Endian Mode Control.

The external address bus of the fido1100 is 31 bits and the external data bus is 16 bits. The

external interface of the fido1100 is discussed in Chapter 6, External Bus Interface.

4.3 Register Model

In the fido1100, each hardware context has its own set of registers. These registers are writable by

only the context to which they belong, and by the master context. The register set summary is as

follows:

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 35 of 313 1-888-824-4184

®

 Eight 32-bit User Data Registers (D0-D7)

 Seven 32-bit Address Registers (A0-A6)

 Two 32-bit Stack Pointers (A7 and A7')

ï The two stack pointers are indexed by supervisor status (A7' stack pointer for

supervisor mode, and A7 for user mode)

 One 32-bit Program Counter

 One 16-bit Status Register (SR)

 One 32-bit Vector Base Register (VBR)

 Two 3-bit Alternate Function Registers (SFC, DFC)

For the internal address of these registers, refer to the Memory and Register Group Address Map

Table in Chapter 5.

The fido1100 architecture uses the big-endian format (i.e., the most significant bytes are stored at

the lowest addresses). For internal data representation, formats are used as described in the

following sections.

4.3.1 Data Register Operands

 Each data register is 32 bits wide.

 Byte operands occupy the low-order 8 bits, word operands occupy the low-order 16 bits,

and long-word operands occupy the full 32 bits.

 When a data register is used as either a source or destination operand (byte or word), only

the low-order byte or word is changed; the high-order portion is not used and is left

unchanged.

 Operands in data registers can represent a single byte, a 16-bit word, a 32-bit long word, or

a 64-bit quad word.

ï Quad-word data can consist of any two data registers without restrictions on order or

pairing.

ï Quad words result from 32-by-32 multiply or divide operations.

ï There are no explicit instructions for manipulating quad-word data types.

 For signed operations, standard 2ôs complement notation is used.

 Instructions requiring BCD operands use the low-order byte as two packed BCD digits.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 36 of 313 1-888-824-4184

®

4.3.2 Address Register Operands

 Each address register is 32 bits wide.

 Address registers cannot be used for byte-sized operands.

 Either the low-order word or the entire 32 bits are used as a source operand. When used as

a word-sized source operand, the 16-bit word is sign-extended to 32 bits before being used.

 As a destination operand, the entire register is affected regardless of operation size.

4.3.3 Operands in Memory

 Memory is byte addressable.

 Multi -byte data is stored in big-endian format.

 Non-aligned access support:

ï Accessing word- or long-word-sized operands does not require that the operand be

word aligned or long-word aligned. Accessing this type of operand on an odd address

will not result in an address exception.

4.4 User/Supervisor Space

Context applications can be run in either User Mode or Supervisor Mode. Privileged instructions

can be executed only in Supervisor mode. This mode control is set via the Status Register (SR).

The SR contains condition codes, the interrupt priority mask, the supervisor/user state, and trace

enable. Only the Condition codes (lower 8 bits) are manipulated by user-mode instructions.

When in supervisor mode, the entire register can be manipulated. Each context has its own copy

of the status register. The SR is defined in Section 4.6.3, Interrupt Priorities and Control.

Separate stacks (as defined by A7 and A7') are used in User and Supervisor mode.

4.5 Instruction Set Summary

The fido1100 supports the CPU32 instruction set with some modifications, and has some new

instructions. The fido1100 general instruction classes include machine functions for all of the

following operations:

 Data movement

 Arithmetic operations

 Logical operations

 Shifts and rotates

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 37 of 313 1-888-824-4184

®

 Bit manipulation

 Binary-Coded Decimal (BCD) arithmetic

 Program control

 System control

 Power Control

Following is a discussion of each instruction class. The complete instruction set is provided in

The fido1100 Instruction Set Reference Guide.

4.5.1 Data Movement Instructions

The MOVE instruction is the basic means of transferring and storing address and data. MOVE

instructions transfer byte, word, and long-word operands from memory to memory, memory to

register, register to memory, and register to register. Address movement instructions (MOVE or

MOVEA) transfer word and long-word operands and ensure that only valid address manipulations

are executed.

In addition to the general MOVE instructions, there are several special data movement

instructions: move multiple registers (MOVEM), move peripheral data (MOVEP), move quickly

(MOVEQ), exchange registers (EXG), load effective address (LEA), push effective address

(PEA), link stack (LINK), and unlink stack (UNLK).

4.5.2 Integer Arithmetic Operations

The arithmetic operations include the four basic operations of add (ADD), subtract (SUB),

multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP, CMPM, CMP2), clear

(CLR), and negate (NEG). The fido1100 Instruction Set Reference Guide includes ADD, CMP,

and SUB instructions for both address and data operations with all operand sizes valid for data

operations. Address operands consist of 16 or 32 bits. The clear and negate instructions apply to

all sizes of data operands.

Signed and unsigned MUL and DIV instructions include:

 Word multiply to produce a long-word product

 Long-word multiply to produce a long-word or quad-word product

 Division of a long-word dividend by a word divisor (word quotient and word remainder)

 Division of a long-word or quad-word dividend by a long-word divisor (long-word

quotient and long-word remainder)

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 38 of 313 1-888-824-4184

®

A set of extended instructions provides multi-precision and mixed-size arithmetic. These

instructions are add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and negate

binary with extend (NEGX).

4.5.3 Logic Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical operations with all

sizes of integer data operands. A similar set of immediate instructions (ANDI, ORI, and EORI)

provide these logical operations with all sizes of immediate data. The TST instruction

arithmetically compares the operand with zero, placing the result in the condition code register.

4.5.4 Shift and Rotate Instructions

The arithmetic shift instructions, ASR and ASL, and logical shift instructions, LSR and LSL,

provide shift operations in both directions. The ROR, ROL, ROXR, and ROXL instructions

perform rotate (circular shift) operations, with and without the extend bit. All shift and rotate

operations can be performed on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count may be specified in the

instruction operation word (to shift from one to eight places) or in a register (modulo 64-shift

count).

Memory shift and rotate operations shift word-length operands only one bit position. The SWAP

instruction exchanges the 16-bit halves of a register. Performance of shift/rotate instructions is

enhanced so that use of the ROR and ROL instructions with a shift count of eight allows fast byte

swapping.

4.5.5 Bit Manipulation Instructions

Bit manipulation operations are accomplished using the following instructions: bit test (BTST), bit

test and set (BSET), bit test and clear (BCLR), and bit test and change (BCHG). All bit

manipulation operations can be performed on either registers or memory. The bit number is

specified as immediate data or in a data register. Register operands are 32 bits long. Memory

operands are 8 bits long.

4.5.6 Binary-Coded Decimal Instructions

Five instructions support operations on Binary-Coded Decimal (BCD) numbers. The arithmetic

operations on packed BCD numbers are add decimal with extend (ABCD), subtract decimal with

extend (SBCD), and negate decimal with extend (NBCD).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 39 of 313 1-888-824-4184

®

4.5.7 Program Control Instructions

A set of subroutine call and return instructions and conditional and unconditional branch

instructions perform program control operations.

4.5.8 System Control Instructions

Privileged instructions, trapping instructions, and instructions that use or modify the condition

code register provide system-control operations. All of these instructions cause the processor to

flush the instruction pipeline.

4.5.9 Power Control Instructions

For a complete understanding of how STOP and LPSTOP instructions are implemented, see

Chapter 10, Power Control.

4.5.10 Modifications to CPU32 Instruction Compatibility

This section discusses the modifications to the instructions the fido1100 implements differently

from the CPU32.

 InterpolateðThis causes an Illegal Instruction exception in the fido1100

 TableðThis causes an Illegal Instruction exception in the fido1100

 MOVEC instructionðThese are new control codes to define fido1100-specific registers

 LPSTOP and BKPT instructions

ï Because the fido1100 exception handling is different from that of a CPU32, LPSTOP

does not ñexportò interrupt priority via external-bus interface. See Chapter 10, Power

Control, for more information.

ï BKPT does not require or generate an external bus cycle for breakpoint acknowledge.

See Chapter 9, Debug Features, for more information.

 BGNDðThe fido1100 does not have a CPU32-style Background Debug Mode (BDM).

The BDM instruction just executes a trap.

 Branch and Jump instructions have additional profiling support. (See Chapter 9, Debug

Features, for details on call and branch trace capability.)

ï Bcc

ï BRA

ï BSR

ï Dbcc

ï JMP

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 40 of 313 1-888-824-4184

®

ï JSR

ï RTE

ï RTS

 Table Lookup and Interpolate instructions are not implementedðthey will TRAP instead.

The fido1100 tools will issue a warning if these instructions are used in assembly code.

ï TBLS and TBLSN

ï TBLU and TBLUN

4.5.11 New Instructions

This section discusses new instructions the fido1100 implements to support the multiple-hardware

context architecture.

 SLEEP instruction:

ï Similar to STOP but does not alter the SR and only affects the current context. Sleep

causes the current context to change from the Ready (RDY) state to the Not Ready

(NOT_RDY) state allowing other pending contexts to run. See Section 4.9, Context

Management, for complete details.

 TRAPX instruction

ï Sends a trap signal to Master Context_0. Can be used for inter-context communication

and exception escalation.

4.6 Interrupts, Faults and Exceptions

4.6.1 Overview

This section presents the following:

 External Interrupts

 Interrupt Priorities and Control

 Interrupt, Fault, and Exception Processing

 Stack Frames

 Vector Table

The fido1100 has many internal interrupt sources, eight external interrupts, and many sources of

faults and exceptions. Each of these has a unique vector in the vector table. With the fido1100,

each context has its own vector table (256 entries each) (see Table 4-8, Exception Vector Table).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 41 of 313 1-888-824-4184

®

With the fido1100, each interrupt has its own priority and is ñassociatedò with a single context.

Each interrupt has an interrupt control register where the priority and context association is

assigned. This is true for all interrupts, internal and external. Interrupts are potential wakeup

events for sleeping contexts. When an interrupt occurs, its own priority and the interrupt priority

mask in the context status register both come into play in determining subsequent processing.

Details are provided in Section 4.6.3, Interrupt Priorities and Control, and in Section 4.8.11,

Context Management Registers.

There are eight external interrupts for connection to external devices. The interrupt priority,

context association, polarity, and edge/level triggering are all parameters in the interrupt control

register. These are discussed in Section 4.6.2, External Interrupts.

Exceptions and faults may not produce the same stack frame format as a CPU32. The fido1100 is

instruction-set compatible with the CPU32 but not binary compatible with it. The details of

exception processing and stack frames are discussed in Section 4.6.4, Interrupt, Fault, and

Exception Handling, and in Section 4.6.4.1., Short Format Stack Frame.

4.6.2 External Interrupts

The fido1100 communications controller can receive interrupt requests from eight external signals

(see Table 4-1).

Table 4-1. External Hardware Signals

Signal Name Description

INT0 Interrupt_0

INT1 Interrupt_1

INT2 Interrupt_2

INT3 Interrupt_3

INT4 DMA0 ACK Muxed pin, Interrupt_4 or DMA Channel 0 Acknowledge

INT5 DMA1 ACK Muxed pin, Interrupt_5 or DMA Channel 1 Acknowledge

INT6 DMA0 REQ Muxed pin, Interrupt_6 or DMA Channel 0 Request

INT7 DMA1 REQ Muxed pin, Interrupt_7 or DMA Channel 1 Request

These eight interrupts are mapped to vectors 24ï31 in the vector table. Each interrupt channel

must be assigned to a particular context by definition of its interrupt control register. These eight

registers are ñaccess-controlledò registers, and as such are writable by only the master context (see

Chapter 11, Access-Controlled Registers). The detailed definition of one of the eight external

interrupt control registers is presented in Table 4-2.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 42 of 313 1-888-824-4184

®

Table 4-2. Interrupt óNô Control Registers (where N=0..7)

31ï14 13 12 11 10 9ï8 7ï5 4ï3 2ï0

Reserved Enable Status Polarity Level Reserved Priority Reserved Context

ï RW R RW RW ï RW ï RW

Note: Reset value is 0x00000000.

 Bits [31ï14]ðReserved

 Bit [13]ðEnable (0=interrupt channel disabled, 1=interrupt channel enabled)

 Bit [12]ðStatus, read this bit to determine interrupt channel status

ï 0ðNo interrupt pending

ï 1ðInterrupt is pending

Note: Reading this bit acknowledges the interrupt and clears the bit.

 Bit [11]ðPolarity of interrupt signal

ï 0ðLow level for level sensitive or falling edge for edge sensitive

ï 1ðHigh level for level sensitive or rising edge for edge sensitive

 Bit [10]ðType of interrupt signal

ï 0ðLevel sensitive

ï 1ðEdge sensitive

 Bits [9ï8]ðReserved

 Bits [7ï5]ðPriority of interrupt channel

Note: Sets the priority of the interrupt channel to be assigned, where zero is

the lowest and seven is the highest, relative to the SR for the associated

context.

 Bits [4ï3]ðReserved

 Bits [2ï0]ðAssociated context for this interrupt

Note: This field defines associated context for that interrupt channel. Only

this context can be conditionally awakened by this interrupt (based on priority

scheme). Context values are 0ï4.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 43 of 313 1-888-824-4184

®

4.6.3 Interrupt Priorities and Control

As described in Chapter 3, Context Architecture, a context can change state from NOT_RDY to

RDY when an interrupt associated with it fires. Whether it changes state and/or subsequently

begins to run is all based on the two-tiered interrupt priority scheme of the fido1100. The

following parameters are all used in resolving an interrupt:

 The priority of the associated interrupt

 The interrupt priority mask in the associated context Status Register

 The overall priority of the interrupted context

If the priority of the interrupt, the Status Register interrupt priority mask, and the priority of the

context allow, the interrupt wakes up and begins to run. Figure 4-1 shows a diagram of this

processing.

The Status Register contains condition codes, interrupt priority mask, supervisor/user state, and

trace enable. Only the Condition codes (lower 8 bits) are manipulated by user-mode instructions.

When in supervisor mode, the entire register can be manipulated. Each context has its own copy

of the Status Register.

This register can be accessed by the owner context in supervisor mode via the MOVESR

instruction. This register is also memory mapped, where it is an ñaccess-controlledò register, and

as such is writable by only the master context (see Table 4-3, Status Register).

Table 4-3. Status Register

System Byte User Byte (CCR)

15ï14 13 12ï11 10ï8 7ï5 4 3 2 1 0

TE Supervisor State Reserved Interrupt Priority Mask Reserved X N Z V C

RW RW ï RW ï R R R R R

Note: Reset value is 0x2700 (trace disabled, supervisor mode, all interrupts masked, all condition codes
cleared).

 Bits [15ï14]ðTrace Enable

ï 00ðTrace disabled

ï 01ðBranch trace(trace on change of flow)

ï 10ðInstruction trace

ï 11ðReserved

Note: This is CPU32 trace control, for the fido1100 enhanced tracing

features, see Chapter 9, Debug Features.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 44 of 313 1-888-824-4184

®

Figure 4-1. Context and Interrupt Priority Processing

In Step 4, if another (higher priority) event
wakes up Context_3, and it sets its IMR to
allow that previous interrupt, it will be serviced
then.

The ContextControlReg can be accessed
only by the master context (Context_0) in
supervisor mode. This register is memory-
mapped.

The CoreStatusReg can be accessed by
any context if it is in supervisor mode
(i.e., each context can set its own interrupt
mask via the MOVESR instruction). This
register is also memory-mapped where it
is writable by only the master context.

Context_2 is running

An interrupt associated with
Context_3 occurs

Examines Context_3 Core
Status Register interrupt mask

Is the priority of

the interrupt to
the priority mask
in the Context_3

Core Status
Reg?

Context_3 goes RDY

Is the priority of
Context_3 > the

priority of
Context_2?

Switches to Context_3

No

No

Looks at the priority field in the
ContextControlReg for both
Context_2 and Context_3

1) Assume that Context_2 is running and an interrupt
occurs. This interrupt is associated with Context_3.

2) Each interrupt has a priority and is associated with a
context, both via that interrupt's control register. Every
interrupt source has a control register.

3) Each context has a Core Status Register that contains an
interrupt mask.

4a) When an interrupt occurs, the Core Status Register for
the associated context (Context_3) is examined to see if the
interrupt is masked or not. If the IntMask=2 and the
interrupt priority = 2, the interrupt is masked. In this case,
the state of Context_3 does not change and Context_2
continues executing.

4b) If the interrupt priority is Ó3, the state of Context_3
(which the interrupt is associated with) goes RDY.

5) Now, if the priority in the Context_3 control register is
more than the priority of the Context_2 control register,
Context_3 will run (the interrupt handler is executed).

Yes

Yes

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 45 of 313 1-888-824-4184

®

 Bit [13]ðSupervisor State (0=user mode, 1=supervisor)

 Bits [12ï11]ðReserved

 Bits [10ï8]ðInterrupt Priority Mask

ï 000ðMinimum Priority Mask (no interrupts are masked)

ï 111ðMaximum Priority Mask (all interrupts are masked)

Note: The priority of an interrupt must be greater than the Interrupt Priority

Mask to be considered un-masked. However, if the priority mask is seven and

the interrupt priority is seven, the interrupt is un-masked even though they are

equal. This is retained CPU32 compatibility.

 Bits [7ï5]ðReserved

 Bit [4]ðXŸExtend flag

 Bit [3]ðNŸNegative flag

 Bit [2]ðZŸZero flag

 Bit [1]ðVŸOverflow flag

 Bit [0]ðCŸCarry flag

Note: For details on how the condition codes are set/cleared, see The

fido1100 Instruction Set Reference Guide.

4.6.4 Interrupt, Fault and Exception Handling

Generally, whenever an interrupt, exception, or fault occurs, the current instruction will always

complete and the event is then serviced. There are two exceptions to this rule:

 The MOVEM instruction

 The DIVS and DIVU instructions

These are the only interruptible instructions in the fido1100.

The fido1100 generates two types of stack frames:

 Short Format Stack Frame (four 16-bit words)

 Instruction Error Stack Frame (six 16-bit words)

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 46 of 313 1-888-824-4184

®

Each interrupt, fault, and exception has a unique entry in the vector table. The type of stack frame

generated for these events and a definition of the stack frames follows.

4.6.4.1 Short Format Stack Frame

The Short Format Stack Frame contains four words and the format is:

 SPðStatus Register Word

 SP +2ðNext Instruction Program Counter High Word

 SP +4ðNext Instruction Program Counter Low Word

 SP +6ðFormat/Vector Offset Word

The Offset Word Format/Vector is presented in Table 4-4.

Table 4-4. Short Format Stack Frame Offset Word Format/Vector

15ï12 11ï0

0 Vector Offset

The top four bits define the stack frame format (which will be zero for this frame type), the

remaining bits are the exception vector offset (i.e., the eight-bit exception vector times four, or 0-

1020 decimal) (see Table 4-8, Exception Vector Table).

This four-word stack frame will be created by:

 Interrupts (Standard Mode contexts only)

 Format Error Exceptions

 The TRAP #n and TRAPX #n Instructions

 Illegal Instruction Exceptions

 A-Line and F-Line un-implemented instructions

 Privilege Violation Exceptions

4.6.4.2 Instruction Error Stack Frame

This stack frame contains six words and the format is:

 SPðStatus Register Word

 SP +2ðNext Instruction Program Counter High Word

 SP +4ðNext Instruction Program Counter Low Word

 SP +6ðFormat/Vector Offset Word

 SP +8ðFaulted Instruction Program Counter High Word

 For MPU Fault: SP +8ðFaulted Address High Word

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 47 of 313 1-888-824-4184

®

 SP +10ðFaulted Instruction Program Counter Low Word

 For MPU Fault: SP +8ðFaulted Address Low Word

The Format/Vector Offset Word format is presented in Table 4-5.

Table 4-5. Instruction Error Stack Frame Offset Word Format/Vector

15ï12 11ï0

2 Vector Offset

The top four bits define the stack frame format (which will be a two for this frame type), the

remaining bits are the exception vector offset (i.e., the eight-bit exception vector times 4, or 0-

1020 decimal) (see Table 4-8, Exception Vector Table).

This six-word stack frame will be created by:

 Instruction related traps:

ï CHK instruction

ï CHK2 instruction

ï TRAPcc instruction

ï TRAPV instruction

ï DIVS/DIVU instructions (divide by zero)

 Trace Exceptions

 Address Errors

 Bus Errors

 MPU Errors

 Hardware breakpoints (the faulted instruction program counter is the address of the

instruction executing when the breakpoint was sensed).

4.6.4.3 Interrupt Handling

As described in Chapter 3, Context Architecture, if an interrupt occurs that is associated with

either a Fast Single-Thread or Fast-Vectored type context, no stack frame is generated. After the

priority is resolved (as described above in this chapter), the processing is as follows:

 Fast Single-ThreadðExecution begins at current PC value for that context

 Fast VectoredðInterrupt vector fetched from vector table, and PC is loaded with address

of ISR

An interrupt associated with a Standard Context generates a Short Format Stack Frame.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 48 of 313 1-888-824-4184

®

4.6.4.4 Fault and Exception Handling

The general processing for fault and exception handling follows the flow described below:

 Any register altered by a faulted instruction effective address calculation is restored to its

previous value.

 The S bit in the status register (SR) is set to establish supervisor privilege level.

 The T0 and T1 bits in the SR are cleared to disable tracing.

 The interrupt-priority mask bit in the contextôs status register is set to be equal to the

priority of the requesting interrupt sourceôs interrupt control register.

Note: This will cause the contextôs interrupt service routine code to assume

the priority of the interrupt (masking it) and thus prevent the interrupt request

from causing an infinite loop. It will be up to the software to reset the

interrupt request by reading the corresponding interrupt control/status

register.

 A stack frame is generated according to the nature of the fault or exception.

 The exception vector is multiplied by four to generate a vector offset.

 The Exception Vector table address is calculated by adding the vector offset to the Vector

Base Register (VBR) for the current context.

 The result is used to fetch the vector from the exception vector table (see Table 4-8,

Exception Vector Table).

 This value is placed into the PC and begins execution from the location.

 The return sequence is case-dependent. If the fault can be handled within the affected

context, the return is based on the stack frame type. If the fault is fatal, control is

transferred to the master context.

A benefit of having multiple contexts is that fault conditions that would be fatal to a typical

processor (e.g., a double-bus fault) need only be fatal to the executing context. The fido1100 uses

the Inter-Context fault (Vector #95) to handle fatal faults: The cases handled are:

 ResetðIf the reset vector points to memory that causes a bus error when the execution unit

fetches it. This can only occur in the master context and hence will halt the entire CPU.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 49 of 313 1-888-824-4184

®

 Double-Bus Fault

 Double-MPU Fault

 Address Error

 Any combination of Address/MPU/Bus Fault while stacking the exception frame (e.g.,

while stacking the exception frame for an MPU fault, a bus fault is generated)

If any of these events occur in Context_0, the processor will be halted. However, if any of these

events occur in Context_1ïContext_4, they are handled as follows:

 The faulting context is halted (the State field in Context Control Register set to HALT)

 The ID of the faulting context is placed in the Faulted Context Register

 Exception #95 (Inter-Context Fault) is forced, transferring control to the master context

which can determine subsequent processing

4.6.5 Summary

All faults and exceptions follow the processing flow as described above. Some faults can be

handled within the executing context and return from the fault based on the stack frame type

generated. Some can fault initially in Context_1ïContext_4, where a subsequent double-fault will

fault to the master context. This is important as each context has its own vector table. Additional

details are provided for the following faults:

 Reset

 Bus Error

 Address Error

 Illegal Instruction

 Instruction Execution Exception

 Instruction Execution Error

 Trace Exception

 Breakpoint

 Context Overtime Fault

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 50 of 313 1-888-824-4184

®

 MPU Error

 Inter-Context Fault

4.6.5.1 Reset Additional Details (Vectors #0 and #1)

 If the reset vector points to memory that causes a bus error when the execution unit fetches

it, it will occur only in the master context and therefore halt the entire CPU.

4.6.5.2 Bus Error Additional Details (Vector #2)

 Generates an Instruction Error Format Stack Frame in the context of execution

 This exception can occur if the CPU tries to access memory that does not exist or if the bus

cycle is aborted due to an rdy_n timeout (see External Bus Timing Diagrams).

Note: An aborted pre-fetch does not cause an exception.

 All processing for this exception occurs while remaining in the same execution context

unless a bus error occurs during the exception processing for the following:

ï An MPU error

ï A bus error

ï An address error

ï A reset

ï While the processor is loading, the stack information during an RTE instruction

execution a double bus fault is generated.

 In any of these events and depending on the execution context, the processor:

ï Context_1ïContext_4ðWrites the context number to the Faulted Context Register,

halts the current context, and forces exception #95(Inter-Context Fault) that switches to

the Master Context.

ï Master ContextðIs halted. Only a reset can restart the processor.

4.6.5.3 Address Error Additional Details (Vector #3)

 Generates an Instruction Error Format Stack Frame

 An Address Error exception occurs if the CPU tries to fetch an instruction from a non-

word aligned boundary (an odd address.)

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 51 of 313 1-888-824-4184

®

Note 1: The exception will occur only when CPU actually tries to access that

memory. If the execution is stalled (by another exception, an interrupt, etc.)

this exception will not occur. When the instruction is resumed (after the

exception is handled) if the stalling condition does not re-occur the exception

will occur.

Note 2: The exception will not occur on an instruction fetch if the instruction

is not executed.

 All processing for this exception occurs while remaining in the same execution context

unless an address error occurs during the exception processing for the following:

ï An MPU error

ï A bus error

ï An address error

ï A reset

ï While the processor is loading the stack information during a RTE instruction

execution a double bus fault is generated

 In any of these events and depending on the execution context the processor:

ï Context_1ïContext_4ðWrites the context number to the Faulted Context Register,

halts the current context, and forces exception #95 (Inter-Context Fault) that switches

to the Master Context.

ï Master ContextðIs halted. Only a reset can restart the processor.

4.6.5.4 Illegal Instruction Additional Details (Vector #4)

 Generates a Short Format Stack Frame

 An illegal instruction exception will occur under the following conditions:

ï If the illegal instruction is executed (opcode 0x4AFC)

ï When the first instruction word contains a bit pattern that does not correspond to a

valid CPU32 instruction

ï If the instruction is a MOVEC instruction and the first extension word does not specify

a valid control code.

ï If the instruction specifies an indexing addressing mode extension word with Bits [5ï4]

= 00 or Bits [3ï0] = 0000

4.6.5.5 Instruction Execution Exception Additional Details (Vectors #5, #6, and #7)

 Generates an Instruction Error Format Stack Frame

 This exception will occur for the following conditions:

ï Divide by ZeroðException Vector #5

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 52 of 313 1-888-824-4184

®

ï CHK, CHK2 instructionsðException Vector #6

ï TRAPcc, TRAPV InstructionsðException Vector #7

4.6.5.6 Instruction Execution Error Additional Details (see Vectors below)

 Generates a Short Format Stack Frame

 This exception will occur under the following conditions:

ï Privilege Violation (executing a supervisor mode instruction while in user mode)ð

Exception Vector #8

ï A-line unimplemented instruction execution (instructions with Bits [15ï12] =

1010b)ðException Vector #10

ï F-line unimplemented instruction execution (instructions with Bits [15ï12] = 1111b)ð

Exception Vector #11

ï TRAP #n instructionðException Vectors #32ï47

ï TRAPX #n instructionðException Vectors #96ï111

ï A stack frame format error is detected (CPU version number in BERR stack frame and

stack frame format number validity during the RTE instruction)ðException Vector #14

4.6.5.7 Trace Exception Additional Details (Vector #9)

 Generates an Instruction Error Format Stack Frame

 This exception will occur when an instruction executes with the Trace bits set in the SR.

These bits will issue this exception according to the rules presented in Table 4-6.

Table 4-6. Trace Exception Instruction Error Generation

T1 T0 Tracing Exception

0 0 Tracing disabled

0 1 Trace on change of status/flow

1 0 Trace on instruction execution

1 1 Reserved

 This functions as follows:

ï With T[1ï0] set to 01b, the trace exception will fire whenever the PC changes sequence

during execution. All branches, jumps, subroutine calls, returns, and status register

manipulations will cause this exception. No exception occurs if the branch is not taken.

ï With T[1ï0] set to 10b, a trace exception will be generated after the instruction

execution is complete. If the instruction is not executed (because of an interrupt, or

because it is an illegal, unimplemented, or privileged instruction), a trace exception is

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 53 of 313 1-888-824-4184

®

not generated. If the instruction execution is aborted, the trace exception is deferred

until the instruction is completed normally. This also includes bus errors or address

errors. The exception handler for this exception is not traced.

ï If tracing is enabled and an interrupt is pending when an instruction executes, the trace

exception will be processed before the interrupt exception.

ï If an instruction forces an exception, the forced exception is processed before the trace

exception.

ï If an instruction is executed and a breakpoint is pending upon completion of the

instruction, the trace exception is processed before the breakpoint.

ï Tracing also affects the operation of the LPSTOP and STOP instructions. If the T1 is

set when one of these instructions executes, the trace exception will be processed and,

upon return from trace, the next instruction will be executed. Hence the processor will

not stop.

ï To prevent a nested trace exception, tracing is disabled as described earlier in the

general fault and exception processing flow.

ï The CPU32 trace capability exists for compatibility. The advanced methods described

in Chapter 9, Debug Features are recommended for better debug capability.

4.6.5.8 Breakpoint Additional Details (Vector #12)

 Generates an Instruction Error Format Stack Frame

 This exception will occur for the following reasons:

ï BKPT Instruction Executed with BKPT bit set in the Debug Control Registerð

Exception Vector #12

ï Hardware breakpoint or watchpoint trigger with break enabled.

 ̧ This exception will be processed in the same execution context, following the flow as

described earlier in the general fault and exception processing flow.

 See Chapter 9, Debug Features, for details on hardware breakpoints and watchpoints.

4.6.5.9 Context Overtime Fault Additional Details (Vector #64)

 The fido1100 provides a set of registers that can be used to monitor and control context

timing. The context timers can operate in two modes:

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 54 of 313 1-888-824-4184

®

ï Time-slice ModeðA feature for running multiple threads within a single context. In

this case, the fault occurs in the local context of operation that should deal with

scheduling as required.

ï Standard ModeðA context-overtime monitor for critical safety applications. In this

case, the fault occurs in the master context and the faulting context is set to the Halted

state with the number of the faulting context placed into the Faulted Context Register.

 See Section 4.9, Context Management, for details on context timer functionality.

Note: This exception is classified as an ñInterruptò and therefore will

generate a Short Format Stack Frame, but only if the targeted context is set to

Standard Mode as defined by the Context Control Register.

4.6.5.10 MPU Error Additional Details (Vector #65)

 Generates an Instruction Error Stack Frame

 This exception can occur under the following conditions:

ï When the MPU disallows memory access. This includes the following conditions:

o A context executes an instruction that results in an effective address pointing to a

memory block that is not assigned to that context.

o A context tries to write to a read-only restricted memory block.

o A context tries to read or write to a disabled memory block.

o An instruction fetch only generates the exception if the instruction is to be

executed.

 The exception will occur only when CPU actually tries to access that memory. If the

execution is stalled (by another exception, an interrupt, etc.) this exception will not occur.

When the instruction is resumed (after the exception is handled) and if the stalling

condition does not re-occur, the MPU exception will occur.

 The exception handler can look at the Faulted Context Register to determine who is the

offending context and can act accordingly.

 All processing for this exception occurs while remaining in the same execution context

unless an MPU error occurs during the exception processing for the following:

ï An MPU error

ï A bus error

ï An address error

ï A reset

ï While the processor is loading the stack information during an RTE instruction

execution, a double-bus fault is generated

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 55 of 313 1-888-824-4184

®

 In any of these events and depending on the execution context the processor:

ï Context_1ïContext_4ðWrites the context number to the Faulted Context Register,

halts the current context, and forces exception #95 (Inter-Context Fault) that switches

to the Master Context.

ï Master ContextðIs halted. Only a reset can restart the processor.

 If an MPU block is set up to point to non-existent memory when an access to that memory

is attempted, a fatal fault will occur rather than an MPU fault.

4.6.5.11 Inter-Context Fault Additional Details (Vector #95)

 This is the fido1100 mechanism to handle fatal faults and isolate a halting condition to a

single context. The cases are as follows:

ï Reset (e.g., if the reset vector points to memory that causes a bus error when the

execution unit fetches it.

Note: When this happens, it will always be in Context_0 and hence will

always result in a total CPU halt.

ï Double Bus Fault

ï Double MPU Fault

ï Double Address Error

ï Any combination ADDRESS/MPU/BUS fault (e.g., while stacking exception frame for

an MPU fault, a bus fault is generated).

 If any of these events occur in Context_1ïContext_4 the following sequence will occur:

ï The faulting context is halted (the State field in the Context Control Register set to

halt)

ï The ID of the faulting context is placed into the Faulted Context Register

ï The Inter-Context Fault (vector #95) is forced, resulting in control transfer to the

master context.

 If any of these events occur in Context_0 execution, the processor will halt all execution.

The Faulted Context Register is defined in Table 4-7.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 56 of 313 1-888-824-4184

®

Table 4-7. Faulted Context Register

31ï8 7ï0

Reserved Context ID

ï RW

Note: Reset value is 0x00000000.

 Bits [31ï8]ðReserved

 Bits [7ï0]ðFaulted context ID (a value from 0 to 4)

4.7 Reset Processing

Activating the RESET_N pin will immediately abort all processing and cause a Reset exception.

The Reset exception is the highest priority of all exceptions. Any processing in progress when

this exception is recognized is lost and cannot be recovered. Reset will result in the following

actions (as defined by the value of Bit [0] in the Power On Reset Register). See Chapter 10,

Power Control, for additional information.

 Power On Reset Register Bit [0] = 0ðMinor Reset:

ï Initialize the Vector Base Register (VBR) for Context_0 to 0x00000000.

ï Initialize the Status Register (SR) for the Context_0 to 0x2700.

ï The following is done using Context_0ôs register set:

o Generates a vector number to reference the Reset exception vector.

o Loads the first long word of the vector into Context_0ôs supervisor stack pointer.

If a bus error exception occurs here, this is considered a double-bus fault and the

processor halts.

o Loads the second long word of the vector into Context_0ôs program counter. If a

bus error exception occurs here, this is considered a double-bus fault and the

processor halts

ï Sets the Context Control Register for Context_0 to 0x1F02. This will:

o Place Context_0 in the Ready state.

o Assign Context_0 the highest priority.

o Cause the processor to fetch and initiate decode of the first instruction to be

executed (in Context_0). If a bus error exception or an address error exception

occurs here, this is considered a double-bus fault and the processor halts

ï Context Timer Clear Register to 0x00000000

ï Context Timer Register to 0x00000000

ï Faulted Context Register to 0x00000000

ï Context Idle Timer Register to 0x00000000

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 57 of 313 1-888-824-4184

®

 Power On Reset Register Bit [0] = 1ð(Major Reset)

ï Initializes the Vector Base Register (VBR) for all contexts to 0x00000000.

ï Initialize the Status Register (SR) for all contexts to 0x2700.

ï The following is done using Context_0ôs register set:

o Generates a vector number to reference the Reset exception vector.

o Loads the first long word of the vector into Context_0ôs supervisor stack pointer.

If a bus-error exception occurs here, this is considered a double-bus fault and the

processor halts.

o Loads the second long word of the vector into Context_0ôs program counter. If a

bus error exception occurs here this is considered a double bus fault and the

processor halts

ï Sets the Context Control Register for Context_0 to 0x1F02. This will:

o Place Context_0 into the Ready state.

o Assign Context_0 the highest priority.

o Cause the processor to fetch and initiate decode of the first instruction to be

executed (in Context_0). If a bus error exception or an address error exception

occurs here this is considered a double bus fault and the processor halts

ï Set all Registers to default values, as indicated in Table 5-20, Memory and Register

Group Address Map Table

Table 4-8 presents the vector assignments implemented for the various exceptions. The Context

Switch column refers to how the exception is handled.

Note: Each context has its own vector table.

Table 4-8. Exception Vector Table

Vector
Number

Vector
Offset (hex)

Vector
Offset (dec) Assignment Context Switch? Notes

0 000 0 RESET: Initial Stack
Pointer

Yes, to Context_0 ï

1 004 4 RESET: Initial Program
Counter

Yes, to Context_0 ï

2 008 8 Bus Error First BERR = No, Second =
Yes, to Context_0

ï

3 00C 12 Address Error First Address Error = No,
Second = Yes, to Context_0

ï

4 010 16 Illegal Instruction No ï

5 014 20 Divide by Zero No ï

6 018 24 CHK, CHK2
Instructions

No ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 58 of 313 1-888-824-4184

®

7 01C 28 TRAPCC, TRAPV
Instructions

No ï

8 020 32 Privilege Violation No ï

9 024 36 Trace No ï

10 028 40 A-Line unimplemented
Instructions

No ï

11 02C 44 F-Line unimplemented
Instructions

No ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 59 of 313 1-888-824-4184

®

Table 4-8. Exception Vector Table (Continued)

Vector
Number

Vector
Offset (hex)

Vector
Offset (dec) Assignment Context Switch? Notes

12 030 48 Hardware Breakpoint No ï

13 034 52 Reserved,
(coprocessor)

ï 3

14 038 56 Format Error No ï

15 03C 60 Uninitialized Interrupt No 1, 3

16 040 64 Software Interrupt Maybe 2

17ï23 044ï05C 68ï92 Unassigned, (reserved) ï 3

24 060 96 Interrupt_0 Maybe 2

25 064 100 Interrupt_1 Maybe 2

26 068 104 Interrupt_2 Maybe 2

27 06C 108 Interrupt_3 Maybe 2

28 070 112 Interrupt_4 Maybe 2

29 074 116 Interrupt_5 Maybe 2

30 078 120 Interrupt_6 Maybe 2

31 07C 124 Interrupt_7 Maybe 2

32ï47 080ï0BC 128ï188 Trap #n instruction No ï

48ï58 0C0ï0E8 192ï232 Reserved,
(coprocessor)

ï 3

59ï63 0EC-0FC 236ï252 Unassigned, (reserved) ï 3

64 100 256 Context Overtime Maybe 4

65 104 260 MPU Error No ï

66 108 264 System Timer 0 Maybe 2

67 10C 268 System Timer 1 Maybe 2

68 110 272 System Timer 2 Maybe 2

69 114 276 System Timer 3 Maybe 2

70 118 280 System Timer 4 Maybe 2

71 11C 284 Watchdog Timer Maybe 2

72 120 288 Timer Counter Unit 0 Maybe 2

73 124 292 Timer Counter Unit 1 Maybe 2

74 128 296 DMA Channel 0 Maybe 2

75 12C 300 DMA Channel 1 Maybe 2

76 130 304 ADC Conversion
Complete

Maybe 2

77 134 308 PMU Ch 0 Interrupt Maybe 2

78 138 312 PMU Ch 1 Interrupt Maybe 2

79 13C 316 PMU Ch 2 Interrupt Maybe 2

80 140 320 PMU Ch 3 Interrupt Maybe 2

81ï84 144ï150 324ï336 Unassigned, (reserved) ï 3

85ï94 154ï178 340ï37C Unassigned, (reserved) ï 3

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 60 of 313 1-888-824-4184

®

Table 4-8. Exception Vector Table (Continued)

Vector
Number

Vector
Offset (hex)

Vector
Offset (dec) Assignment Context Switch? Notes

95 17C 380 Inter-Context Fault Yes, (to Context_0) ï

96ï111 180ï1BC 384ï444 Trapx instruction Yes, (to Context_0) ï

112ï255 1C0ï3FC 344ï1020 Unassigned, (reserved) ï 3

Notes:
1. An uninitialized interrupt (vector #15) can occur in a CPU32 part because the interrupt vector is obtained

via an interrupt-acknowledge bus cycle. Because the fido1100 uses a fixed-interrupt vector scheme,
this will not occur.

2. Interrupt exceptions are assigned to a context and may cause the hardware executive to switch to it if
necessary.

3. The normal CPU32 system uses an interrupt-acknowledge bus cycle to fetch interrupt vectors. Because
the fido1100 does not do this, the vectors not specifically assigned here are inaccessible to the user.

4. This operates in two modes. In one mode, there is a context switch to Context_0. In the other mode,
the fault is handled by the faulting context.

4.8 Context Management

4.8.1 Overview

This section will cover the following context management features of fido:

 The Master Context

 Context priorities

 Context modes

 Context states

 Contexts and interrupts

 Contexts timers

 Context initialization

 Context claim registers

 Detail register definitions

Refer to Chapter 3, Context Architecture, for an overview on the fido architecture and context

management. It describes context types, modes of operation, and contextsô transition states.

If a feature is not needed, do nothing. This applies to context management features or fido

features such as memory protection, the ADC unit, etc. The default register state for context

timers, priority inheritanceðall of itðis disabled. Disabled features have no effect on system

operation.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 61 of 313 1-888-824-4184

®

4.8.2 Master Context

Context_0 is the Master Context. By default, it is the highest priority context, regardless of

priority settings in the Context Control Register. This manual uses the terms ñContext_0ò and

ñMaster Contextò interchangeably.

The Master Context can write to any writable field of any register in the register memory map (see

Chapter 12, Register Map Reference). Many registers defined throughout this manual have

access-controlled bit fields or may be entirely access-controlled registers. Write capability to

access-controlled registers and bit fields within registers can be done only with code executing in

the Master Context. See Chapter 11, Access-Controlled Registers, for more information.

From a reset condition, the fido chip powers up running in Context_0. At this point, it is a single-

context machine; all other contexts (1ï4) are disabled. All internal peripherals and features of fido

power up in a disabled or unused state. This is why it makes sense to perform all initialization that

the application requires in the Master Context and, when completed, sleep the Master Context,

waking it up only when needed.

From the Master Context, all other contexts can be completely set up, armed, and ready to go as

desired. Always consider the following attributes when setting up a context for operation:

 Context type (Standard, Fast-Vectored, or Fast Single-Thread)

 Context initial state (RDY, NOT_RDY, HALTED), initial program counter, and stacks

 Associated interrupts (both internal and external)

 Internal peripheral initialization (context timers, timer-counters, ADC, etc.)

 Memory protection and internal debug capability

See related chapters for internal peripherals and other fido features for details on initialization

requirement details. If a feature is not needed, no action is necessary. The power up state of

internal peripherals and features are disabled and will have no effect on system operation.

Although some applications call for multi-context use, some might run entirely out of the Master

Context and not use other contexts. In this case, the Master Context could initialize everything it

needs, then transfer control to an executive and continue from there.

4.8.3 Context Priorities

The priority each context operates at is specified in its Context Control Register (i.e., zero through

seven, where zero is lowest and seven is highest). During initialization, the Master Context would

set up this register for each context used by the application. Also priority-related is the interrupt

priority mask found in the Core Status Register for each context that would also be initialized by

the Master Context. Section 4.8.6, Contexts and Interrupts, provides an example of how these two

fields relate and when a context gets to run.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 62 of 313 1-888-824-4184

®

4.8.4 Context Modes

The Context Control Register of the context specifies the mode a context operates in (Standard,

Fast-Vectored, or Fast Single-Thread). During initialization, the Master Context would set up this

register for each context used by the application. In many real-time embedded applications, there

are usually interrupt-driven events of varying priorities that must be handled along with other

lower priority work that can be done in the background (see Figure 4-2).

The fido solution to this example could be as shown in Table 4-9.

Table 4-9. Sample Context Control Register

Context Mode Priority Initial State Description

0 Fast-Vectored 7 RDY Performs all initialization then becomes an
exception handler.

1 Fast Single-
Thread

6 NOT_RDY This is the minimum response time for the highest
priority in the system. It is coded such that the
function terminates with a sleep followed by a
branch to the entry point.

2 Fast-Vectored 5 NOT_RDY All medium-priority interrupts are grouped here.
Data processing could be done here.

3 Standard 1 RDY Handle all background tasks and low-priority data
processing needs here. Associate low-priority
interrupts with this context and service them within
it.

4 Reserved 0 HALTED Held in reserve for future system needs.

4.8.5 Context States

The initial state of all contexts (RDY, NOT_RDY, and HALTED) are also set in the Context

Control Register. During initialization, the Master Context should set all used contexts to the

desired initial state, and when the master sleeps itself, the highest priority context that is in a RDY

state will run. If a context has an interrupt wakeup event (i.e., Fast-Vectored or Fast Single-

Thread), that context could be set to NOT_RDY so it will not run until the interrupt fires. In the

sample system on the previous page, after the Master Context has finished initialization and sleeps

itself, Context_3 would begin to run. Context_1 will run whenever the high-speed interrupt fires.

Context_2 will run whenever an associated interrupt fires and Context_1 is not in a RDY state.

The sleep instruction is used to transition from an RDY state to the NOT_RDY state, facilitating

execution control. See the following example code for a context that assumes Context_1 is an

FST context, activated via the Context_1 software interrupt.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 63 of 313 1-888-824-4184

®

Figure 4-2. Sample System

CTX1_SW_INT_HDLR: /* code for FAST - SINGLE THREAD MODE */

 movel CHR_CTX1_INT_CTRL, ctx1swintstat /* ack nowledge the S/W interrupt, else it pends */

 oril VALUE_1, IO_ADDR_1 /* perform some I/O, for example */

 /* optional óCó handler call could be made here */

 andil VALUE_2, IO_ADDR_2 /* perform some more I/O */

 sleep /* Context_ 1 is now in a NOT_RDY state */

 bra CTX1_SW_INT_HDLR /* with its program counter here...*/

Therefore, the next time the Context_1 software interrupt occurs, Context_1 wakes up and begins

executing at its current program counter, which is now at the branch instruction. This is how the

program counter needs to be controlled by software when using an FST-type context. In addition,

it is important to acknowledge the interrupt. Any fido interrupt source has a status register that

needs to be read via software to perform the interrupt acknowledge.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 64 of 313 1-888-824-4184

®

Note: This also serves as an example of how contexts can communicate with

each other. In this case, Context_1 has been set up as an FST context. It was

initialized to a NOT_RDY state by the Master Context so it will not go RDY

until the Context_1 software interrupt fires. The Context_1 software interrupt

fires when the Context_1 S/W Interrupt Actuation Register is written to, which

is designed to be used by other contexts.

4.8.6 Contexts and Interrupts

To understand better how context priorities, interrupt priorities, and context states are interrelated,

refer to the example shown in Figure 4-1, Context and Interrupt Priority Processing. Context_2 is

currently running and Context_3 is in a NOT_RDY state. An interrupt associated with Context_3

fires. Note the logic the execution follows in resolving which context runs next.

In the final analysis, fidoôs context and interrupt priority mechanism results in a deterministic

outcome. Whichever RDY context has the highest priority will run.

4.8.7 Context Timers

Another available option for use in context control is a set of timing registers that can track,

specify, and limit execution time. Some applications require the ability to record timing statistics

and other performance data. This register set, one for each context, facilitates the ability to do this

(see Table 4-10).

Table 4-10. Description of Context Timers Registers

Register Name Description

Context Timer Enable
Register

Overall enable- and mode-control register used to manage context timers. Is
a single register and an access-controlled register and writable by only the
Master Context (Context_0).

Context Timer Register Holds the value measuring context execution time. One for each context.
Read/write access dependent upon timer mode.

Context Max Time
Register

Used to limit context execution time in time-slice mode. One for each
context. Is an access-controlled register and writable by only the Master
Context (Context_0).

Context Timer Clear
Register

Used to clear the Context Timer Register. A single register and an access-
controlled register and writable by only the Master Context (Context_0).

Context Idle Timer
Register

Timer used to track time during which no context is active. A single, read-only
register.

The context timers can be used to track execution time and when in use have no additional

throughput overhead. They can be used for any or all contexts via the Context Timer Enable

Register, or not at all if not needed. Additionally, the context timer function has two different

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 65 of 313 1-888-824-4184

®

modes of operation, standard and time-sliced. This is selectable via the Context Timer Enable

Register.

4.8.7.1 Standard Mode

In standard mode, the Context Max Time Register is treated as a critical time that, when exceeded,

is a faulting event. If the Context Timer Register (for a context using this feature in standard

mode) exceeds the Context Max Time Register, it will generate a context-overtime fault exception

to the Master Context. The context ID will be scored in the Faulted Context Register. This

implementation is taken to address time-critical applications requiring this level of safety.

4.8.7.2 Time-Slice Mode

In time-slice mode, the Context Max Time Register is not treated as a fault. It is used to limit the

time a context runs before changing threads within a context or perhaps sleeping itself. If the

Context Timer Register (for a context using this feature in time-slice mode) exceeds the Context

Max Time Register, it generates a context-overtime fault exception to the local context.

Therefore, even though an exception is generated, it is local to the operating context, which can

service the exception and do something like schedule another thread or, if done temporarily, sleep

the context. This feature was implemented to facilitate management of multiple threads within a

single context.

4.8.8 Context Initialization

The ideal place for all context initialization is in the Master Contextðand done once for all

contexts during power-up. The following features associated with all used contexts would be set

up:

 Priority, mode, and initial state

 Stacks, initial program counter, and vector base table

 Associated interrupts (external and internal)

 Context timer setup (if desired)

 Memory protection (if desired)

Note: In systems using an external bus master, the currently running context

timer will continue to run when the fido1100 yields to an external master. This

time will need to be accounted for when planning context maximum run times.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 66 of 313 1-888-824-4184

®

Because most of the above features require writing to access-controlled registers, perform this

processing from the Master Context in supervisor mode.

4.8.9 Context Claim Registers

The context claim register set is used to share resources between or among contexts, while still

retaining priority determinism and preventing priority inversion. Priority inversion is defined as

any condition where a lower-priority task runs before a higher-priority task. If a lower-priority

task is running initially and locks a shared resource, and then a higher-priority task begins to run

needing the same resource, a method is needed to allow the lower-priority task to run just long

enough to finish using the resource. This is a common problem for software operating systems.

The fido addresses it with hardware using the register set shown in Table 4-11.

Table 4-11. Description of Context Claim Register

Register Name Description

Context Claim Register
Context Priority Inheritance
Register
Pending Context Register

A three-register set used to manage context execution when sharing
resources among contexts. One register set is for each context except the
Master Context. Only the Context Claim register is writable, the others are
set by the execution engine based on events.

The Context Claim register is used to define a shared resource. It is the only software-writable

register. The other registers are set by hardware based upon events. The value written to the

Context Claim Register is an arbitrary assignment (except for 0 and 0xFFF). It would represent

the object ID of a shared resource that is used in more than one context. See the example in

Table 4-12.

Table 4-12. Example of Context Claim Register Implementation

Context State Priority

1 NOT_RDY 3

2 NOT_RDY 2

3 RDY 1

Initially, Context_3 is running. It writes 0x55 to its claim register, gets the claim, and continues to

run. Context_1 receives a wakeup event, transitions to RDY and begins to run, and writes 0x55 to

its claim register. Since object ID 0x55 is locked (write will not take), Context_1 is now pending

on Context_3. The Ctx_1 pend bit is set (in Context_3ôs Pending Context Register), preventing it

from running even though it is now in a RDY state. Simultaneously, because of the Context_1

claim, Context_3 now inherits Priority 3, and begins to run again. It runs, and writes a 0 to its

claim register when finished with the resource.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 67 of 313 1-888-824-4184

®

Note 1: If Context_2 receives a wakeup event prior to Context_3

relinquishing its claim, Context_2 will not run because Context_3 is running

at the inherited Priority 3, which prevents inversion.

When Context_3 writes a 0 to its claim register, the Ctx1_pend bit is cleared,

Context_3 returns to Priority 1, and Context_1 runs.

Note 2: If Context_2 wakes up while Context_3 is running, it runs and posts a

0x55 claim. Context_3 will run at priority 2 while Context_2 pends in a RDY

state. Then if Context_1 wakes up, runs, and posts a third 0x55 claim,

Context_3 will resume at Priority 3. When Context_3 relinquishes its claim,

Context_1 will run ahead of Context_2 because it is higher in priority than

Context_2.

Software does not need to do anything to manage the context pending or priority inheritance, it

only needs to set overall context priority and define the shared resource IDs. The hardware takes

care of the rest and does so within a single clock cycle. See the Context Claim Register Set

detailed definition for more information.

4.8.10 Software Interrupt Control and Actuation Registers

This register set can be used for inter-context communication and resource sharing. It allows a

mailbox interrupt to pass messages or manage control. Each context has a pair of registers to

implement this feature (see Table 4-13).

Table 4-13. Description of Software Interrupt Control and Actuation Registers

Register Name Description

S/W Interrupt Control
Register
S/W Interrupt Actuation
Register

Register pair used to communicate between contexts using mailbox-like
interruptsðone register pair for each context. The interrupt control register
is access-controlled and writable by only the Master Context and the owner
context. The actuation registers are read/write to any context.

Any context can write to the S/W Interrupt Actuation Register of another context. A context can

also write to its own if desired. The interrupt generated to the other context is a wakeup event

subject to the rules of other interrupts. The Core Status Register priority mask, the priority of the

S/W Interrupt for the interrupted context, and the context priority of the interrupted context control

whether or when the interrupted context runs.

See Section 4.8.20, Software Interrupt Control Register, and Section 4.8.21, Software Interrupt

Actuation Register, for more information.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 68 of 313 1-888-824-4184

®

4.8.11 Context Management Registers

This section contains the context-management register definitions. For addresses of all registers,

see the register memory map in Chapter 12, Register Map Reference. These are all directly

addressable memory-mapped registers, subject to the Memory Base Offset Register. These

registers are defined in Table 4-14.

Table 4-14. Description of Context Management Registers

Register Name Description

Context Control Register Defines context type, priority, and execution stateðone for each
context. Is an access-controlled register and writable by only the
Master Context (Context_0).

Context Timer Enable
Register

Overall enable and mode control register used to manage context
timers. A single register and an access-controlled register and
writable by only the Master Context (Context_0).

Context Timer Register Holds the value measuring context execution timeðone for each
context. Read/write by owner context.

Context Max Time Register Used to limit context execution time in time-slice modeðone for each
context. Is an access-controlled register and writable by only the
Master Context (Context_0).

Context Timer Clear Register Used to clear the Context Timer Register. A single register and an
access-controlled register and writable by only the Master Context
(Context_0).

Context Idle Timer Register Timer used to track time during which no context is active. A single,
read-only register.

Context Claim Register
Context Priority Inheritance
Register
Pending Context Register

Three-register set used to manage context execution when sharing
resources among contexts. One register set for each context except
the Master Context. Only the Context Claim register is writable, the
others are set by the execution engine based on events.

S/W Interrupt Control
Register
S/W Interrupt Actuation
Register

Register pair used to communicate between contexts using mailbox-
like interrupts. One register pair for each context. The interrupt
control register is writable by the Master Context (Context_0) and the
owner context. The actuation registers are read/write to any context.

4.8.12 Context Control Register

The context control register is the basic context definition register. This register is access-

controlled and writable by only the Master Context. It specifies context control and status. There

is one context control register for each context (see Table 4-15).

Table 4-15. Context Control Register

Context Control Register

31ï16 15 14ï13 12ï11 10ï8 7ï2 1ï0

Reserved Reserved Interrupt Mode Reserved Priority Reserved State

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 69 of 313 1-888-824-4184

®

ï R RW R RW ï RW

Note: Reset value for Context_0 is 0x1F02; for other contexts is 0x1800.

 Bits [31ï16]ðReserved

 Bit [15]ðReserved, always reads 0

 Bits [14ï13]ðDefines the type of response the context makes to a pending interrupt
ï 00 Ÿ Standard mode. Operates like a standard microprocessor. If interrupt is of higher

than or equal priority than the current interrupt mask in context status register, then the
current state of the context is stacked and execution is begun at the interrupt vector.

ï 01 Ÿ Fast mode. All interrupts are masked while the context is in the Ready state,
when a context is in the NOT READY state, an interrupt of priority higher than or
equal to the mask in the status register for that context will cause a vector fetch and
execution begins. Nothing is stacked.

ï 11 Ÿ Fast single-threaded mode. All interrupts are masked while the context is in the
Ready state, when a context is in the NOT READY state, an interrupt of priority higher
than or equal to the mask in the status register for that context will cause execution to
begin at the current program counter location for that interrupt. Nothing is stackedðno
vector fetch is performed.

 Bits [12ï11] Ÿ Reserved, always read back 1 (future expansion for priority)

 Bits [10ï8] Ÿ Priority of the context (0ï7) where 7 is highest, 0 is lowest

 Bits [7ï2] Ÿ Reserved, always reads 0

 Bits [1ï0] Ÿ Execution state of the context
ï 00 Ÿ HALTED. The context will not execute when in the halted state. Only a write to

this register can move a context out of this state.

ï 01 Ÿ NOT READY. The context can be made ready by any interrupt/exception
targeted to it.

ï 10 Ÿ READY. The context is ready to run and will be placed into execution when it is
the highest-priority ready context.

4.8.13 Context Timer Enable Register

The Context Timer Enable Register enables the context timing function on a context-by-context

basis. Both the mode (standard versus time-slice) and the enable/disable of the context timer are

controlled here. This register is access-controlled and writable by only the Master Context (see

Table 4-16).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 70 of 313 1-888-824-4184

®

Table 4-16. Context Timer Enable Register

31 30ï21 20 19 18 17 16 15ï5 4 3 2 1 0

ENI Reserved Mode4 Mode3 Mode2 Mode1 Mode0 Reserved EN4 EN3 EN2 EN1 EN0

RW ï RW RW RW RW RW ï RW RW RW RW RW

Note: Reset value is 0x00000000.

 Bit [31]ðWrite of ñ1ò enables the Context Idle Timer, write of 0 disables, a read returns

its status.

 Bits [30ï21]ðReserved.

 Bit [20]ðContext_4 timer mode control, write of 0 specifies standard context timer mode,

write of 1 specifies time slice mode, a read returns current mode.

 Bit [19]ðContext_3 timer mode control, write of 0 specifies standard context timer mode,

write of 1 specifies time slice mode, a read returns current mode.

 Bit [18]ðContext_2 timer mode control, write of 0 specifies standard context timer mode,

write of 1 specifies time slice mode, a read returns current mode.

 Bit [17]ðContext_1 timer mode control, write of 0 specifies standard context timer mode,

write of 1 specifies time slice mode, a read returns current mode.

 Bit [16]ðContext_0 timer mode control, write of 0 specifies standard context timer mode,

write of 1 specifies time-slice mode, a read returns current mode.

Note: Concerning the mode bits [20ï16] : When a timer is in standard mode,

a context timer > the maximum time will generate a priority 6 overtime fault

to the Master Context. When a timer is in time-slice mode, a context timer >

the maximum time will fault to the local context which will remain in a RDY

state. It is anticipated the fault handler for this context will be responsible for

scheduling activity.

 Bits [15ï5]ðReserved.

 Bit [4]ðContext_4 timer enables, write of 1 enables, write of 0 disables, a read returns

current status.

 Bit [3]ðContext_3 timer enables, write of 1 enables, write of 0 disables, a read returns

current status.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 71 of 313 1-888-824-4184

®

 Bit [2]ðContext_2 timer enables, write of 1 enables, write of 0 disables, a read returns

current status.

 Bit [1]ðContext_1 timer enables, write of 1 enables, write of 0 disables, a read returns

current status.

 Bit [0]ðContext_0 timer enables, write of 1 enables, write of 0 disables, a read returns

current status.

4.8.14 Context Timer Register

Associated with each context is a 24-bit timer used to measure/control execution time. These

registers operate in two distinct modes as indicated in the Mode field of the Context Timer Enable

Register.

4.8.14.1 Standard Mode Operation

When the Mode field of the Context Timer Enable Register is in Standard Mode, the following

applies. The timer increments when the context is active and the associated EN flag of the

Context Timer Enable Register is a 1. The timer remains constant when the context is inactive or

the EN flag is 0. The register is cleared whenever the associated CLR flag of the Context Timer

Clear Register is written with a 1. A write to the register has no effect. The register is cleared

whenever the associated CLR flag of the Context Timer Clear Register is written with a 1. The

register is read-only in standard-mode operation. See also Section 4.8.15, Context Maximum

Time Register, for instruction on the use of this register as a means for guaranteeing time-

partitioning.

4.8.14.2 Time-Slice Mode Operation

When the mode field of the Context Timer Enable Register is in Time-Slice Mode, the following

applies. The timer increments when the context is active, the associated EN flag of the Context

Timer Enable Register is a 1, and the supervisor flag of the status register is a 0 (in user mode).

This means that only user-mode execution is timed. Interrupt service code is not counted.

A write to this register (in time-slice mode) is only valid when in supervisor mode (user-level

writes have no effect), the value written is then used to carry on with counting. This feature is

used to allow multiple software contexts to use the time-slice feature (at various priorities) and to

allow a given task to give up the remainder of its slice (see Table 4-17).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 72 of 313 1-888-824-4184

®

Table 4-17. Context Timer Counter Register

31ï24 23ï0

Reserved Count

ï RW

Note: Reset value is 0x00000000.

 Bits [31ï24]ðReserved

 Bits [23ï0]ðCount Ÿ When active, the counter is incremented every 16 external clock

cycles, for example:

ï 66-MHz base frequency

o Counter LSB = 240 nsec

o Counter Period (max) = 4.03 seconds

ï 50-MHz base frequency

o Counter LSB = 320 nsec

o Counter Period (max) = 5.36 seconds

4.8.15 Context Maximum Time Register

This register is duplicated for each context. These registers are access-controlled and writable by

only the Master Context.

This register is used to generate a fault based on execution time for a context. The run time

desired to be assigned to the context is written in this register with the LSB having the same

scaling as that in the Context Timer Register. The lower 9 bits of this register are ignored (always

return 0), while bits 23ï9 are compared to the Context Timer Register. If the value in the Context

Timer Register is greater than or equal to the value in the Context Maximum Time Register, what

happens next depends upon the context timer mode:

 Standard Mode: The context is halted and a context overtime fault is generated to the

Master Context (with the exception that if the overrunning context is the Master Context,

then the context is not halted but the fault is generated). The context ID is placed in the

Faulted Context Register.

 Time-Slice Mode: The context is not halted. A context overtime fault is generated to the

local context of operation (for scheduling purposes).

If the value in the Context Maximum Time Register is zero then this feature is disabled (see

Table 4-18).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 73 of 313 1-888-824-4184

®

Table 4-18. Context Maximum Time Register

31ï24 23ï9 8ï0

Reserved Max Value Reserved

ï RW ï

Note: Reset value is 0x00000000.

 Bits [31ï24]ðReserved

 Bits [23ï9]ðMax Value , for example:

ï System clock speed 50 MHz

o Minimum timeout 163.8 µsec

o Maximum timeout 5.36 seconds

ï System clock speed 66 MHz

o Minimum timeout 124.1 µsec

o Maximum timeout 4.03 seconds

 Bits [8ï0] Ÿ Reserved, always read back 0

4.8.16 Context Timer Clear Register

The Context Timer Clear Register provides a single place to clear (reset) the context timers on an

individual basis. This register is access-controlled and writable by only the Master Context (see

Table 4-19).

Table 4-19. Context Timer Clear Register

31 30ï5 4 3 2 1 0

CLRI Reserved Clr4 Clr3 Clr2 Clr1 Clr0

RW ï RW RW RW RW RW

Note: Reset value is 0x00000000.

 Bit [31]ðWrite of 1 clears the Context Idle Timer, always reads 0

 Bits [30ï5]ðReserved

 Bit [4]ðWrite of 1 clears Context_4 Timer Register, always reads 0

 Bit [3]ðWrite of 1 clears Context_3 Timer Register, always reads 0

 Bit [2]ðWrite of 1 clears Context_2 Timer Register, always reads 0

 Bit [1]ðWrite of 1 clears Context_1 Timer Register, always reads 0

 Bit [0]ðWrite of 1 clears Context_0 Timer Register, always reads 0

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 74 of 313 1-888-824-4184

®

4.8.17 Context Idle Timer Register

This is a 24-bit timer that measures the time during which no context is active (effectively

equivalent for idle). This register is READ ONLY. The timer increments when all the contexts

are inactive and the ENI flag of the Context Timer Enable Register is a 1. If any context is active

or the ENI flag is a 0, the timer remains constant. The register is cleared whenever the CLRI flag

of the Context Timer Clear Register is written with a ñ1ò (see Table 4-20).

Table 4-20. Context Idle Timer Register

31ï24 23ï0

Reserved Count

ï R

Note: Reset value is 0x00000000.

 Bits [31ï24]ðReserved

 Bits [23ï0]ðCount Ÿ When active, the counter is incremented every 16 external clock

cycles, for example:

ï 66-Mhz base frequency

o Counter LSB = 240 nsec

o Counter Period (max) = 4.03 seconds

ï 50-Mhz base frequency

o Counter LSB = 320 nsec

o Counter Period (max) = 5.36 seconds

4.8.18 Context Claim Register Set

A problem facing any system is how to manage limited resources among numerous threads of

execution. This is no less true with a hardware kernel. While this can be managed in software by

the Master Context (which can modify priorities, sleep contexts, etc.), the overhead is not

desirable, also it effectively locks out any intermediate priority contexts (intermediate between the

Master Context and the context[s] whose priority is being manipulated) while the manipulations

are taking place.

To manage this problem, the following registers are defined for each context except the Master

Context Table 4-21).

Table 4-21. Context Claim Priority Inheritance Register

31ï3 2ï0

Reserved Priority

ï R

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 75 of 313 1-888-824-4184

®

The value in this register overrides the value in the Context Control Register if it is greater (higher

priority). This register is not writable by software, it has a reset value of 0x000 (lowest priority).

See Table 4-22 for how other values are loaded into it.

Table 4-22. Pending Contexts Register

31ï5 4 3 2 1 0

Reserved Ctx4
pend

Ctx3
pend

Ctx2
pend

Ctx1
pend

Reserved

ï R R R R ï

If one of the flags in this register is set then the corresponding context is held from execution until

the flag is cleared. This register is not writable by software. See Table 4-23 for how it is

modified.

Table 4-23. Claim Register

31ï12 11ï0

Reserved Object ID

ï RW

Note: Reset value is 0x00000000.

 Bits [31ï12]ðReserved

 Bits [11ï0]ðObject ID

This register can be written according to the following:

 A write of a non-zero value by the context associated with the register.

ï If no other Claim register (no claim register associated with another context) contains

the same value then the value is written into the Object ID field.

ï If another Claim register has the same value already in its Object ID field then:

o No write takes place to the Claim register

o In the registers for the context that has already ñclaimedò the value, the flag

corresponding to the current context is set in the pending contexts register.

o If the priority of the current context is higher than that in the Priority Inheritance

Register of the context that holds the claim then the current priority overwrites it

(raising the priority of the context that holds the claim).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 76 of 313 1-888-824-4184

®

Note: This mechanism is used by fido to handle the problem of priority

inversion, and allows a higher priority context to temporarily yield to a lower

priority context until a shared resource is released.

Take the following example assuming these initial conditions (see Table 4-24).

Table 4-24. Claim Register Example

Context State Priority

1 NOT_RDY 3

2 NOT_RDY 2

3 RDY 1

Initially, Context_3 is running. It writes 0x55 to its claim register, gets the claim and continues to

run. Context_1 receives a wakeup event, transitions to RDY and begins to run, and writes 0x55 to

its claim register. Because object ID 0x55 is locked, the write does not take and Context_1 is now

pending on Context_3. The Ctx_1 pend bit is set (in Context_3ôs Pending Context Register);

preventing it from running even though it is now in a RDY state. Simultaneously, Context_3 now

inherits Priority 3, and begins to run again. It runs, and writes a 0 to its claim register when

finished with the resource.

Note 1: If Context_2 receives a wakeup event prior to Context_3

relinquishing its claim, Context_2 will not run because Context_3 is running

at the inherited Priority 3, which prevents inversion.

When Context_3 writes a 0 to its claim register, the Ctx1 pend bit is cleared, Context_3 priority

returns to 1, and Context_1 runs.

Note 2: If Context_2 wakes up while Context_3 is running, it runs and posts a

0x55 claim, Context_3 will run at inherited priority 3 while Context_2 pends

in a RDY state. Then if Context_1 wakes up, runs, and posts a third 0x55

claim, Context_3 will resume at priority 3 while both Context_1 and

Context_2 pend in a RDY state. When Context_3 relinquishes its claim,

Context_1 will run ahead of Context_2, based on its higher priority.

 A write of zero by the context associated with the register.

ï The Priority Inheritance Register cleared, returning precedence to the Context Control

Register

ï The Claim Register is cleared, relinquishing the contextôs claim on the object

ï The Pending Contexts Register is cleared, freeing for execution any pending contexts

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 77 of 313 1-888-824-4184

®

 A write of all ones by the context associated with the register.

ï The Priority Inheritance Register is cleared, returning precedence to the Context

Control Register

ï The Claim Register is cleared, relinquishing the contextôs claim on the object

ï The Pending Contexts Register is cleared, freeing for execution any pending contexts

ï The context associated will be put to the ñNOT READYò state

 A write by a context not associated with the register

ï No effect

4.8.19 Software Interrupt Register Set

Associated with each context is a pair of registers that allows an interrupt to be generated by

software action. Any context (including the context with which the registers are associated) that

writes to the appropriate one will cause an interrupt (assuming it is enabled and of sufficient

priority). These registers can be used to facilitate context communication and provide for another

method to manage shared resources. The two registers consist of a control register and an

actuation register.

4.8.20 Software Interrupt Control Register

These registers (one for each context) provide a means to control the software interrupt for the

associated hardware context. In addition, the priority (relative to the SR for that context) is

controlled here. This register is access-controlled and writable by only the Master Context and the

owner context (see Table 4-25).

Table 4-25. Software Interrupt Control Register

31ï14 13 12 11ï8 7ï5 4ï0

Reserved Enable Status Reserved Priority Reserved

ï RW R ï RW ï

Note: Reset value is 0x00000000.

 Bits [31ï14]ðReserved

 Bit [13]ðInterrupt enable bit for this context (1=enabled, 0=disabled)

 Bit [12]ðInterrupt status bit for this context (read this bit to determine status), 1=interrupt

pending, a read will clear the bit, acknowledging the interrupt

 Bits [11ï8]ðReserved

 Bits [7ï5]ðThis field allows the priority of the interrupt channel to be assigned, 0 is

lowest and 7 is highest

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 78 of 313 1-888-824-4184

®

 Bits [4ï0]ðReserved

4.8.21 Software Interrupt Actuation Register

These registers (one for each context) provide a means to generate an interrupt to any context via

software. A write of any value will generate the interrupt action. The register can be used by

software as a mailbox for identifying the source of the interrupt (Table 4-26).

Table 4-26. Software Interrupt Actuation Register

31ï0

Signature Data

RW

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 79 of 313 1-888-824-4184

®

5. Memory Management and Protection

5.1 Overview

The fido1100 has built-in memory and memory management/protection features. This section

will cover the following aspects of the fido1100:

 The fido1100 internal SRAM

 The fido1100 internal Relocatable Rapid Execution Memory (RREM)

 Endian Mode Control

 MOVEC Access Based Registers

 Memory and Register Group Address Map

 Memory Protection Unit

 Programmable Chip Select Registers

 Complete Register Address Map

5.2 The fido1100 Internal Memory and Registers

The fido1100 provides a general-purpose use 24-Kbyte Internal SRAM, a 32-Kbyte RREM that

improves execution speed of heavily used code segments, and an MPU to control access to blocks

of memory on a context-by-context basis. It also has an Endian Mode Control feature to perform

byte swapping automatically that is controllable using the most significant bit (MSB) of the

address. The fido1100 interfaces to external memory via chip-select control registers and an on-

board SDRAM controller (see Figure 5-1).

5.3 Internal SRAM

The fido1100 provides a general-purpose use 24-Kbyte Internal SRAM. This directly addressable

RAM is intended for frequently accessed data. Because the memory is internal, accesses are much

quicker than using the external bus. There are no restrictions on how to use this RAM. Some

ideas follow and are application-dependent.

 Stacks

 Data tables

 Key data structures

 Any other frequently accessed data where time constraints are critical

Note: The base address of Internal SRAM is set by the value in the Memory

Base Offset (MBO) register.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 80 of 313 1-888-824-4184

®

Figure 5-1. The fido1100 Internal Memory and Registers

5.4 Internal Relocatable Rapid Execution Memory

The fido1100 provides a 32-Kbyte relocatable rapid execution memory (RREM) targeted for code

execution. Sections of code that are high frequency in use can be copied from external memory

(flash, for example) to this internal memory, where they will execute more quickly. The

Relocatable RAM Control Register is used to re-map the external address block to a RREM block

after the copy has been done, thus overlaying the two address blocks. When the CPU issues an

address to fetch an instruction that would have resulted in an external bus cycle, a faster internal

bus cycle occurs instead. The advantage of this scheme is that the software does not need to know

whether it is executing a piece of code from RREM or external memory. A re-mapping example

is provided in Table 5-1, Example of Re-Mapping Relocatable RAM Memory.

The RREM is 32 Kbyte of internal memory partitioned into 16, 2-Kbyte segments. Each segment

is independently mappable via the RREM Control Registers to overlay an external memory area

on 2-Kbyte boundaries (this is the only restriction). There are 16 Relocatable RAM Control

Registers, one for each block of Relocatable RAM. They are access-controlled and writable by

only the Master Context. Typically, the Master Context would re-map the desired code sections to

RREM during the initialization sequence (see Table 5-1).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 81 of 313 1-888-824-4184

®

Table 5-1. Relocatable RAM Control Register

31ï11 10ï1 0

Base Address Reserved EN

RW ï RW

Note: Reset value is 0x00000000.

 Bits [31ï11]ðBase address of memory block (on a 2-Kbyte boundary) that will be

overlaid to RREM.

Note: This base address value must not overlap any fido1100 internal

memory (User SRAM, register space, etc.).

 Bits [10ï1]ðReserved, set to 0

 Bit [0]ðEnable bit for RREM block (0=disabled, 1=enabled)

Note: The Relocatable RAM memory can be loaded like any other until any of

the enable flags are set. Once any block is enabled, the only path to access

all blocks is through fetching instructions (the memory can only be used for

code, not for operand space). Thus all blocks to be used must be set up prior

to enabling any block.

5.5 Re-Mapping Example

Assuming an 8112-byte block of code to accelerate. It begins at address 0x22_1248 in flash

memory and is contiguous. The steps to map this to RREM are presented in Table 5-2.

Table 5-2. Example of Re-Mapping Relocatable RAM Memory

Step
No. Description

1 Set sourceAddrPtr=0x221000 (must adhere to 2-Kbyte address boundary).

2 Set destAddrPtr=0x180000 (base address of RREM assuming MBO register = 0x100000).

3 Set numWordsToCopy=0x2000 (8192 bytes) and perform the copy from source memory to RREM.
At this point, the code is address aligned in RREM.

4 Set Relocatable RAM Control Register_0 to 0x221001.

5 Set Relocatable RAM Control Register_1 to 0x221801.

6 Set Relocatable RAM Control Register_2 to 0x222001.

7 Set Relocatable RAM Control Register_3 to 0x22_801. At this point, all of the 8112 bytes of code
are now re-mapped and enabled to operate out of RREM. There are also some bytes of code both
before and after the 8112-byte block that will execute out of RREM.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 82 of 313 1-888-824-4184

®

Note that in order to comply with the 2-Kbyte boundary, there will be 0x248 bytes of code prior to

the desired 8112-byte block, and 0x50 bytes of code after the desired block that has an address

range also mapped to RREM. Once a RREM block is enabled, all instruction fetches within the

2-Kbyte address range it is configured for are made from RREM. An additional concern exists at

addresses 0x221000 and 0x222FFF. Given the multi-word nature of many CPU instructions, it is

possible for part of an instruction to be in flash and the other part in RREM. This will cause an

instruction fault and should be avoided.

The above example shows how to re-map code to RREM, and points out some potential issues

with using RREM. The best way to use RREM safely and effectively is to use the compiler/linker

to force critical blocks of code to 2-Kbyte, aligned-address boundaries. This will result in reduced

memory waste and avoids an instruction fault.

5.6 Endian Mode Control

The fido1100 has a 32-bit physical memory mapped address space, with Bit [31] of the address

acting as a little-endian/big-endian control mode bit. This address space covers all internal and

external resources available to the fido1100. Internal resource examples are register banks,

internal peripherals, internal User SRAM, RREM, and PMU Transmit and Receive Buffers.

External resources are any address not mapped as an internal resource. Examples of external

resources would be flash memory, SDRAM memory, and external peripherals.

5.7 Definitions

 Big EndianðThe most significant data byte of multi-byte data operand is stored at the

least significant address. The subsequent address stores next to the most significant byte

and so on.

 Little EndianðThe least significant data byte of multi-byte data operand is stored at the

least significant address. The subsequent address stores next to the least significant byte

and so on.

 Byte Ÿ 8 bits (moveb instruction)

 Word Ÿ 16 bits (movew instruction)

 Long word Ÿ 32 bits (movel instruction)

This feature provides the user with a method to read/write data efficiently in a little-endian byte

order (even though the fido1100 is a big-endian machine). The implementation is that all memory

accesses to addresses greater than 0x7fffffff (i.e., with address-Bit [31] set) will reverse the byte

order of the read/written data as follows:

 Byte AccessðNo change

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 83 of 313 1-888-824-4184

®

 Word AccessïSwaps bytes 0 and 1

 Long-Word AccessðSwaps bytes 0 and 3, swaps bytes 1 and 2 (same as swapping 0 and

1, swapping 2 and 3, then swapping words)

Examples of a word write (16-bit) and a long-word write (32-bit) are provided in Tables 5-3 and

5-4.

Table 5-3. Word Write Operation Example (Original Data in Register 1 = 0x1234)

Column Index 1 2

Effective Address 0x00000000 (Big Endian) 0x80000000 (Little Endian)

Memory (byte location) at address 0 gets 12 34

Memory (byte location) at address 1 gets 34 12

Table 5-4. Long-Word Write Operation Example (Original Data in Register 1 = 0x12345678)

Column Index 1 2

Effective Address 0x00000000 (Big Endian) 0x80000000 (Little Endian)

Memory (byte location) at address 0 gets 12 78

Memory (byte location) at address 1 gets 34 56

Memory (byte location) at address 2 gets 56 34

Memory (byte location) at address 3 gets 78 12

The side effects of the endian-mode control feature are:

 Only 31 address pins are available externally

 The address space has 2 rather than 4 Gbytes

5.8 MOVEC Access-Based Registers

A set of special registers in the fido1100 are accessible only using the MOVEC instruction.

Table 5-5 summarizes these registers and their address for the MOVEC instruction.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 84 of 313 1-888-824-4184

®

Table 5-5. Summary of MOVEC Access-Based Registers

Name

MOVEC
Control
Code

Major-Reset
Affect

Minor-
Reset
Affect

Reset-
Instruction

Affect

Read
Register
Mapping Notes

Source Function
Code
(SFC)

0x000 Set to
0x0000

Unaffected None N/A Refers to SFC for
current context.

Destination
Function Code
(DFC)

0x001 Set to
0x0000

Unaffected None N/A Refers to DFC for
current context.

User Stack Pointer
(USP)

0x800 Context-
Dependent

Unaffected None N/A Refers to User
Stack Pointer for
current context.

Vector Base
Register
(VBR)

0x801 Set to
0x0000

Unaffected None N/A Refers to Vector
Base Register for
current context.

Configuration
Access Control
(CAC)

0xFFE Set to
0x00000000

Unaffected None 0xFFFE Only accessible
from Master
Context
(Context_0).

Memory Base
Offset
(MBO)

0xFFF Set to
00100000

Unaffected None 0xFFFF Only accessible
from Master
Context
(Context_0).

Detailed descriptions of all MOVEC mapped registers follow.

5.9 Source Function Code Register (0x000)

This register has been retained in support of the CPU32 architecture in conjunction with the

MOVES instruction to provide eight separate address spaces. This feature is not supported on the

fido1100. However, the registers are available for reading and writing to provide compatibility

with legacy CPU32 code (but they have no functional effect) (see Table 5-6).

Table 5-6. Source Function Code Register

31ï3 2ï0

Reserved FC0

ï RW

Note: Reset value is 0x00000000.

 Bits [31ï3]ðReserved

 Bits [2ï0]ðFC0 value (unused, has no effect)

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 85 of 313 1-888-824-4184

®

Note: Via the MOVEC instruction, any context can set its own SFC register

as desired. This register also shows up in the memory-mapped register

address space, where it is directly accessible, but only by the Master Context.

5.10 Destination Function Code Register (0x001)

This register has been retained in support of the CPU32 architecture in conjunction with the

MOVES instruction to provide eight separate address spaces. This feature is not supported on the

fido1100. However, the registers are available for reading and writing to provide compatibility

with legacy CPU32 code (but they have no functional effect) (see Table 5-7).

Table 5-7. Destination Function Code Register

31ï3 2ï0

Reserved FC1

ï RW

Note: Reset value is 0x00000000.

 Bits [31ï3]ðReserved

 Bits [2ï0]ðFC1 value (unused, has no effect)

Note: Via the MOVEC instruction, any context can set its own DFC register

as desired. This register also shows up in the memory-mapped register

address space, where it is directly accessible, but only by the Master Context.

5.11 User Stack Pointer Register (0x800)

This register is the user mode stack pointer for the context. Recall that each context has its own

stack, (for both user and privileged mode) (see Table 5-8).

Table 5-8. User Stack Pointer Register

31ï0

User SP Address

RW

Note: Reset value is 0x00000000.

 Bits [31ï0]ðCurrent user mode SP address

Note: Via the MOVEC instruction, any context can set its own User SP

register as desired. This register also shows up in the memory-mapped

register address space, where it is directly accessible, but only by the Master

Context.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 86 of 313 1-888-824-4184

®

5.12 Vector Base Register (0x801)

This register is the base address for the context vector table. Recall that each context has its own

interrupt/exception table. The vector base address must be on a 1024-byte boundary (256 possible

vectors at 4 bytes each) (see Table 5-9).

Table 5-9. Vector Base Register

31ï10 9ï0

Vector Base Address Reserved, set to 0

RW ï

Note: Reset value is 0x00000000.

 Bits [31ï10]ðInterrupt/exception vector table address

 Bits [9ï0]ðReserved, set to 0 for boundary restriction

Note: Via the MOVEC instruction, any context can set its own vector base

register as desired. This register also shows up in the memory-mapped

register address space, where it is directly accessible, but only by the Master

Context.

5.13 Configuration Access Control Register (0xFFE)

This register has a single field that controls access to the processor registers that are access-

controlled. The Master Context is the only context that can write to access-controlled registers,

and this register can prevent (or allow) even Master Context write ability. Only the Master

Context can write to the Configuration Access Control (CAC) register (see Chapter 11, Access-

Controlled Registers).

At power up, this register defaults to 0 such that the Master Context can write to all access-

controlled registers. If the application has some safety requirement to guarantee certain registers

are never changed after initialization, the Master Context could perform the initialization then lock

itself out via the Lock bit (see Table 5-10).

Table 5-10. Configuration Access Control Register

31ï1 0

Reserved Lock

ï RW

Note: Reset value is 0x00000000.

 Bits [31ï1]ðReserved

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 87 of 313 1-888-824-4184

®

 Bit [0]ðLock bit

ï 0 Ÿ Write access is allowed to configuration register space (for Master Context only)

ï 1 Ÿ Write access disabled to configuration register space

5.14 Memory Base Offset Register (0xFFF)

All internal fido1100 resources are located relative to the value of the Memory Base Offset

(MBO) Register. The MBO allows the internal resources of the fido1100 to be conveniently

located anywhere in the 31-bit physical address of the fido1100 on a 1-Mbyte boundary.

Internal addresses are OR-ed with the value in the MBO Register to adjust bits 30ï20. For

example, the MBO Register has a value of 0x00100000 at POR, thus the internal User SRAM

which has an offset of 0x00000000 would be accessed at address 0x00100000. If the MBO

Register was changed to address 0x70F00000, then the internal User SRAM which has an offset

of 0x00000000 would be accessed at address 0x70F00000.

The Master Context would typically set this register early in the initialization sequence, as it

would likely access many of the internal registers.

Table 5-11. Memory Base Offset Register

31ï20 19ï0

Offset Reserved

RW ï

Note: Reset value is 0x00100000.

 Bits [31ï20]ðForms the upper 12 bits of address decode

Note: The value of this field should never be set to 0 as it will cause a conflict

with User SRAM to overlay the flash address area.

 Bits [19ï0] ï Reserved and are set to 0

5.15 Memory and Register Group Address Map

Table 5-12, Memory and Register Group Address Map Table, lists the default address range for

memory and registers. It is important to note that the address shown (other than CS0 and

SDRAM) refer to internal locations and will be offset by the default value of the Memory Base

Offset register. The default POR value of the Memory Base Offset register is 0x00100000. For

example, if the Memory Base Offset was 0x00100000, the DMA Control Register would be at

address 0x001A0000. The offset programmed into the Memory Base Offset register applies to

every internal register shown in the Complete Register Address Map Table. All addresses refer to

32-bit registers. Addresses with the same start and finish values indicate a single 32-bit register

for the specified function.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 88 of 313 1-888-824-4184

®

Note: The user must not write or attempt reads from any address in the

reserved rows. Accessing these locations will result in indeterminate read or

write behavior.

Table 5-12. Memory and Register Group Address Map Table

Description Allocation Address Range Notes

CS0 (Boot Area) 256 Kbytes 0x00000000ï0x0003FFFF 1, 2, 7, 8, 10

User SRAM 24 Kbytes 0x00100000ï0x00105FFF 2, 4

RREM 32 Kbytes 0x00180000ï0x00187FFF 2, 4

DMA control registers 8 x 32 0x001A0000ï0x001A001C 3, 4

Available 128 x 32 0x001A0080ï0x001A027C 4, 12

TCU control registers 32 x 32 0x001A0280ï0x001A02FC 3, 4

System Timer registers 7 x 32 0x001A0300ï0x001A0318 3, 4

Watchdog Timer registers 2 x 32 0x001A0340ï0x001A0344 3, 4

POR Reset Register 1 x 32 0x001A0360 3, 4

Available 7 x 32 0x001A0364ï0x001A037C 4, 12

Clock Mask Register 1 x 32 0x001A0380 3, 4

Available 31 x 32 0x001A0384ï0x001A03FC 4, 12

Device ID Register 1 x 32 0x001A0400 3, 4, 11

Debug Control Registers 35 x 32 0x001A0404ï0x001A048C 3, 4

ADC control registers 10 x 32 0x001A0600ï0x001A0624 3, 4

BIU control registers 16 x 32 0x001A0680ï0x001A06BC 3, 4

BIU Priority register 1 x 32 0x001A0700 3, 4

BIU Default Timing register 1 x 32 0x001A0704 3, 4

Available 62 x 32 0x001A0708ï0x001A07FC 4, 12

SDRAM Controller Registers 12 x 32 0x001A0800ï0x001A082C 3, 4, 9

Interrupt Control Registers 8 x 32 0x001A0900ï0x001A091C 3, 4

Software Interrupts 5 x 32 0x001A0980ï0x001A0990 3, 4

Available 27 x 32 0x001A0994ï0x001A09FC 4, 12

PMU control registers 142 x 32 0x001A0A00ï0x001A0C34 3, 4

PMU Reserved 304 x 32 0x001A0C40ï0x001A10FC 4, 12, 13

Context Claim Registers 20 x 32 0x001A1100ï0x001A114C 3, 4

Available 7148 x 32 0x001A1150ï0x001A80FC 4, 12

Context_0 Core Registers 22 x 32 0x001A8100ï0x001A8154 3, 4

Context_1 Core Registers 22 x 32 0x001A8180ï0x001A81D4 3, 4

Context_2 Core Registers 22 x 32 0x001A8200ï0x001A8254 3, 4

Context_3 Core Registers 22 x 32 0x001A8280ï0x001A82D4 3, 4

Context_4 Core Registers 22 x 32 0x001A8300ï0x001A8354 3, 4

Reserved 27 x 22 x 32 0x001A8380ï0x001A90FC 4, 12

Available 960 x 32 0x001A9100ï0x001A9FFC 4, 12

MPU Block Control Registers 16 x 32 0x001AA000ï0x001AA03C 3, 4

MPU Attribute Registers 16 x 32 0x001AA080ï0x001AA0BC 3, 4

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 89 of 313 1-888-824-4184

®

Table 5-12. Memory and Register Group Address Map Table (Continued)

Description Allocation Address Range Notes

MPU Allocation Registers 5 x 32 0x001AA100ï0x001AA110 3, 4

RREM Control Registers 16 x 32 0x001AA180ï0x001AA1BC 3, 4, 6

Available 128 x 32 0x001AA200ï0x001AA3FC 4, 12

Context Control Registers 5 x 32 0x001AA400ï0x001AA410 3, 4

Context Max Time Registers 5 x 32 0x001AA480ï0x001AA490 3, 4

Context Timer Registers 5 x 32 0x001AA500ï0x001AA510 3, 4

Context Timer Clear Reg 1 x 32 0x001AA580 3, 4

Context Idle Timer 1 x 32 0x001AA584 3, 4

Context Timer Enable Reg 1 x 32 0x001AA588 3, 4

Available 29 x 32 0x001AA58Cï0x001AA5FC 4, 12

Faulted Context ID 1 x 32 0x001AA600 3, 4, 11

Current Context ID 1 x 32 0x001AA604 3, 4, 11

Available 5758 x 32 0x001AA608ï0x001AFFFF 4, 12

PMU Transmit Memory 1 Kbyte x 32 0x001B0000ï0x001B0FFF 3, 4

PMU Receive Memory 2 Kbyte x 32 0x001B4000ï0x001B5FFF 3, 4

UIC0 control registers 82 x 32 0x001B8000ï0x001B8144 3, 4

UIC1 control registers 82 x 32 0x001B8200ï0x001B8344 3, 4

UIC2 control registers 82 x 32 0x001B8400ï0x001B8544 3, 4

UIC3 control registers 82 x 32 0x001B8600ï0x001B8744 3, 4

UIC Reserved 82 x 32 0x001B8800ï0x001B8F44 3, 4, 13

SDRAM 128 Mbytes 0x00000000ï0x07FFFFFF 2, 7, 8, 9

Notes:
1. Must contain reset vector and initial exception vector table, max allocation assumes no relocation of

remaining register map.
2. May be addressed as bytes, words, or long words.
3. All registers are accessed on long-word aligned boundaries, even if they are not 32-bit registers. Only

the registers defined in the Complete Register Address Map Table will return data. All other addresses
will return 0.

4. The Address Range shown is power on default and the base can be adjusted via the Memory Base
Offset Register (initialized to 0x00100000).

5. The SDRAM overlaps all other memory-mapped peripherals. SDRAM will not be selected within the
address range of any overlapped peripheral.

6. RREM will be initialized at this address. The MPU registers allow it to be relocated on a block-by-block
basis.

7. External Memory, shown based on POR values of registers.
8. Cannot be relocated but can be expanded in size.
9. SDRAM Control Registers control address of SDRAM.
10.For both POR and Reset the Chip Select 0 will select 256 Kbytes starting at 0x00000000 and ending at

0x0003ffff.
11. Read only.
12.Accessing these locations will cause an external bus cycle.
13.These registers are reserved for future expansion, reading them will always return 0.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 90 of 313 1-888-824-4184

®

5.16 Memory Protection Unit

The Memory Protection Unit (MPU) provides 16 Memory Control Blocks. Each block has an

associated register that defines the starting point, size, and attributes of the memory range defined

by that block. In addition to these registers, each hardware context has an associated MPU

allocation register that identifies which blocks are active for the corresponding context. These

access-controlled registers are writable by only the Master Context (Context_0). Typically, the

Master Context would set up the MPU as required for the application in the initialization

sequence. The basic rules for the MPU are as follows:

 If a memory range is not in any block then it is accessible by all contexts.

 If a memory range is defined but is not enabled for the current context, then an access to

that range will generate an MPU fault (exception #65, see also Chapter 4,Core CPU, for

details on exception processing).

Note: DMA violation of protected space do not raise exception #65, there is

an MPU fault bit in the DMA Control Register that is set in this event (see

Section 7.3, Direct Memory Access Controllers).

 If a memory range is read only and defined for the current context, a write to that range

will generate an MPU fault.

 Multiple controls can be placed on a single-address range (e.g., one block could be set up

allowing read/write access to some range for Context_2 while another block allows read-

only access to the same range for Context_3).

Both instruction space and data space can be protected. Details and an MPU example of these

registers are provided in this section (see Table 5-13).

Table 5-13. Memory Protection Units

Register Name Description

MPU_Block_Control_Base_Register A two-register set used to define a protected address range in
memory and also its attributes (size, RO, R/W etc.) There
are 16 register pairs (MPU Block Control Base Register and
MPU Block Control Attributes Register) allowing 16 separate
areas to be protected. These are access-controlled registers
and writable by only the Master Context (Context_0).

MPU_Block_Control_Attributes_Register

CTX0_MPU_Allocation
CTX1_MPU_Allocation
CTX2_MPU_Allocation
CTX3_MPU_Allocation
CTX4_MPU_Allocation

Five independent registers, one for each context. The above
16 defined blocks can be assigned to individual contexts via
these registers. These are access-controlled registers and
writable by only the Master Context (Context_0).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 91 of 313 1-888-824-4184

®

5.17 MPU Block Control Base Register

This register defines the address block in memory to be protected. The smallest block size

allowed is 64 bytes, so the address is restricted to a 64-byte boundary. There are 16 of these

registers, which are used in conjunction with the MPU Block Control Attributes Registers (see

Table 5-14).

Table 5-14. MPU Block Control Base Register

31ï6 5ï0

Base Address Reserved

RW ï

Note: Reset value is 0x00000000.

 Bits [31ï6]ðBase Address (addresses bits 31ï6 of the protected block)

Note: Must be on a 64-byte boundary

 Bits [5ï0]ðReserved

5.18 MPU Block Control Attributes Register

This register defines the attributes of the block in memory to be protected. There are 16 of these

registers, which are used in conjunction with the MPU Block Control Base Registers (see

Table 5-15).

Table 5-15. MPU Block Control Attributes Register

31ï7 6ï2 1 0

Reserved Size RO EN

ï RW RW RW

Note: Reset value is 0x00000000.

 Bits [31ï7]ðReserved

 Bits [6ï2]ðBlock size (see Table 5-16)

 Bit [1]ðRead-Only Control bit

ï 0 Ÿ block can be written and read

ï 1 Ÿ block is read only

 Bit [0]ðBlock Enable bit

ï 0 Ÿ Block is disabled, has no effect on address space

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 92 of 313 1-888-824-4184

®

ï 1 Ÿ Block enabled, address rules apply to contexts as defined in

CTXx_MPU_Allocation registers

Table 5-16. Value and Block Sizes

Size Value Block Size Size Value Block Size

0 64 bytes 16 4 Mbytes

1 128 bytes 17 8 Mbytes

2 256 bytes 18 16 Mbytes

3 512 bytes 19 32 Mbytes

4 1 Kbytes 20 64 Mbytes

5 2 Kbytes 21 128 Mbytes

6 4 Kbytes 22 256 Mbytes

7 8 Kbytes 23 512 Mbytes

8 16 Kbytes 24 1 Gbyte

9 32 Kbytes 25 2 Gbytes

10 64 Kbytes 26 Undefined

11 128 Kbytes 27 Undefined

12 256 Kbytes 28 undefined

13 512 Kbytes 29 undefined

14 1 Mbyte 30 undefined

15 2 Mbytes 31 undefined

5.19 CTX MPU Allocation Registers

The block definitions in the MPU Block Control Base Registers/MPU Block Control Attributes

Registers for the MPU are allocated to some set of contexts. The CTX MPU Allocation Registers

are used to make that allocation. An Allocation register is associated with each context; each bit

in the Allocation Register is associated with an MPU Block Control Register. Thus, to allocate a

block to a particular context, set the corresponding bit in the Context Allocation Register. These

are access-controlled registers and writable by only the Master Context, Context_0 (see

Table 5-17).

There are five CTX MPU Allocation Registers, one for each context.

When the MPU disallows a memory access, it will raise exception #65 (MPU Error Exception)

(see Chapter 4, Core CPU, on exception handling for details). It should also be noted that a DMA

transaction that violates memory protection does not raise exception #65ðthe DMA is halted with

an error indicating the violation (see Chapter 7, Peripheral Management Unit, for details).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 93 of 313 1-888-824-4184

®

Table 5-17. CTX MPU Allocation Register

31ï16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

ï RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

Note: Reset value is 0x00000000.

 Bits [31ï16]ðReserved

 Bit [15]ðBlock 15 application bit

ï 0 Ÿ block does not apply to this context

ï 1 Ÿ block applies to this context

 Bit [14]ðBlock 14 application bit

ï 0 Ÿ block does not apply to this context

ï 1 Ÿ block applies to this context

 Bits [13ï0] Block 13 to Block 0 individual application bits

ï 0 Ÿ block does not apply to this context

ï 1 Ÿ block applies to this context

Following is an example problem on how to set up the MPU.

5.20 MPU Example

Table 5-18 presents an example of data space protection.

Table 5-18. Example of MPU Data Space

MPU
Block

Address
Range CTX0 CTX1 CTX2 CTX3 CTX4 Remarks

0 0x300_0000ï
0x300_1FFF

RW None None None RW Only contexts 0 and 4 have access.
Any other context access should
MPU fault.

1 0x300_8000ï
0x300_87FF

RW None RW None None Only contexts 0 and 2 have access
as indicated. Contexts 3 and 4 will
fault if they access this area.

2 0x300_8000ï
0x300_87FF

None RO None None None Context_1 has RO access.

The MPU registers could be set up as shown in Table 5-19 to establish this protection.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 94 of 313 1-888-824-4184

®

Table 5-19. Example of MPU Protection

Register Value

MPU Block Control Base Register_0 0x0300_0000

MPU Block Control Attributes Register_0 0x0000_001D (size=8 Kbyte, RW)

MPU Block Control Base Register_1 0x0300_8000

MPU Block Control Attributes Register_1 0x0000_0015 (size=2 Kbyte, RW)

MPU Block Control Base Register_2 0x0300_8000

MPU Block Control Attributes Register_2 0x0000_0017 (size=2 Kbyte, RO)

CTX0 MPU Allocation Register 0x0000_0003 (MPU blocks 0 and 1, RW on both)

CTX1 MPU Allocation Register 0x0000_0004 (MPU block 2, RO)

CTX2 MPU Allocation Register 0x0000_0002 (MPU block 1, RW)

CTX3 MPU Allocation Register 0x0000_0000 (no access to protected blocks)

CTX4 MPU Allocation Register 0x0000_0001 (MPU block 0, RW)

In this example, the first three register pairs in the MPU were used. Any of the register pairs in

any order can be used. Using memory protection has no impact on system timing or performance.

Note: Although the above register assignments are based on how the

fido1100 is designed to work, there is a known error. If more than one MPU

block is set up for the same address range, and if one block is RW, and the

other is RO, the context that is assigned RO access will not generate an MPU

fault if it writes to this range. It erroneously picks up write ability from the

write-enabled MPU block. A correction is planned for the next release of the

part.

In this example, therefore, Context_1 will not fault if it writes to Block 2.

5.21 Programmable Chip Select Registers

The fido1100 interfaces to external memory and peripherals through a set of programmable chip

select registers. A built-in SDRAM controller interfaces to SDRAM separately. The highlights of

these features are as follows:

 Programmable Chip Selects and External Bus Timing

 External Memory

External memory attached to the fido1100 must not use addresses that overlap those functions or

the reserved spaces listed in Table 5-12, Memory and Register Group Address Map Table.

 Eight chip selects provide eight configurable banks

ï Supports 8- or 16-bit external devices

ï External device can insert wait states into bus cycle

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 95 of 313 1-888-824-4184

®

 Programmable memory timing per chip-select

ï Chip-select delay

ï Output-enable delay

ï Write-enable timing

ï Variable number of wait states

 SDRAM configuration, timing, and bank select

Refer to Chapter 6, External Bus Interface, for details on managing the external bus and for

definitions of registers associated with this feature.

5.22 Complete Register Address Map

Table 5-20 provides the complete memory-mapped register address map for the fido1100.

Table 5-20. Complete Register Address Map Table

Block Name
Base

Address*
Major Reset

value
Minor Reset

value Notes

DMA Channel 0 Control
Register

DMACh0_Control 0x000A0000 0x00000000 0x00000000 2

DMA Channel 0 Count
Register

DMACh0_Count 0x000A0004 0x00000000 0x00000000 ï

DMA Channel 0
Destination Address
Register

DMACh0_Dest 0x000A0008 0x00000000 0x00000000 ï

DMA Channel 0 Source
Address Register

DMACh0_Source 0x000A000C 0x00000000 0x00000000 ï

DMA Channel 1 Control
Register

DMACh1_Control 0x000A0010 0x00000000 0x00000000 2

DMA Channel 1 Count
Register

DMACh1_Count 0x000A0014 0x00000000 0x00000000 ï

DMA Channel 0
Destination Address
Register

DMACh1_Dest 0x000A0018 0x00000000 0x00000000 ï

DMA Channel 0 Source
Address Register

DMACh1_Source 0x000A001C 0x00000000 0x00000000 ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 96 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Reserved Reserved 0x000A0020ï
0x000A027C

ï ï ï

TCU 0 Status
Register

TCU00_Status 0x000A0280 0x00000000 Unaffected ï

TCU 0 Mode
Register

TCU00_Mode 0x000A0284 0x00000000 Unaffected 2

TCU 0 Counter
Register

TCU00_Counter 0x000A0288 0x00000000 Unaffected ï

TCU0 Channel
0 IO Mode
Register

TCU00_Ch0_IOMode 0x000A0290 0x00000000 Unaffected ï

TCU0 Channel
1 IO Mode
Register

TCU00_Ch1_IOMode 0x000A0294 0x00000000 Unaffected ï

TCU0 Channel
2 IO Mode
Register

TCU00_Ch2_IOMode 0x000A0298 0x00000000 Unaffected ï

TCU0 Channel
3 IO Mode
Register

TCU00_Ch3_IOMode 0x000A029C 0x00000000 Unaffected ï

TCU0 Channel
0 Input
Capture
Register

TCU00_Ch0_InputCapture 0x000A02A0 0x00000000 Unaffected ï

TCU0 Channel
1 Input
Capture
Register

TCU00_Ch1_InputCapture 0x000A02A4 0x00000000 Unaffected ï

TCU0 Channel
2 Input
Capture
Register

TCU00_Ch2_InputCapture 0x000A02A8 0x00000000 Unaffected ï

TCU0 Channel
3 Input
Capture
Register

TCU00_Ch3_InputCapture 0x000A02AC 0x00000000 Unaffected ï

TCU0 Channel
0 Output
Capture
Register

TCU00_Ch0_OutputCompare 0x000A02B0 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 97 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

TCU0 Channel
1 Output
Capture
Register

TCU00_Ch1_OutputCompare 0x000A02B4 0x00000000 Unaffected ï

TCU0 Channel
2 Output
Capture
Register

TCU00_Ch2_OutputCompare 0x000A02B8 0x00000000 Unaffected ï

TCU0 Channel
3 Output
Capture
Register

TCU00_Ch3_OutputCompare 0x000A02BC 0x00000000 Unaffected ï

TCU 1 Status
Register

TCU01_Status 0x000A02C0 0x00000000 Unaffected ï

TCU 1 Mode
Register

TCU01_Mode 0x000A02C4 0x00000000 Unaffected 2

TCU 1 Counter
Register

TCU01_Counter 0x000A02C8 0x00000000 Unaffected ï

TCU1 Channel
0 IO Mode
Register

TCU01_Ch0_IOMode 0x000A02D0 0x00000000 Unaffected ï

TCU1 Channel
1 IO Mode
Register

TCU01_Ch1_IOMode 0x000A02D4 0x00000000 Unaffected ï

TCU1 Channel
2 IO Mode
Register

TCU01_Ch2_IOMode 0x000A02D8 0x00000000 Unaffected ï

TCU1 Channel
3 IO Mode
Register

TCU01_Ch3_IOMode 0x000A02DC 0x00000000 Unaffected ï

TCU1 Channel
0 Input
Capture
Register

TCU01_Ch0_InputCapture 0x000A02E0 0x00000000 Unaffected ï

TCU1 Channel
1 Input
Capture
Register

TCU01_Ch1_InputCapture 0x000A02E4 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 98 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

TCU1 Channel
2 Input
Capture
Register

TCU01_Ch2_InputCapture 0x000A02E8 0x00000000 Unaffected ï

TCU1 Channel
3 Input
Capture
Register

TCU01_Ch3_InputCapture 0x000A02EC 0x00000000 Unaffected ï

TCU1 Channel
0 Output
Capture
Register

TCU01_Ch0_OutputCompare 0x000A02F0 0x00000000 Unaffected ï

TCU1 Channel
1 Output
Capture
Register

TCU01_Ch1_OutputCompare 0x000A02F4 0x00000000 Unaffected ï

TCU1 Channel
2 Output
Capture
Register

TCU01_Ch2_OutputCompare 0x000A02F8 0x00000000 Unaffected ï

TCU1 Channel
3 Output
Capture
Register

TCU01_Ch3_OutputCompare 0x000A02FC 0x00000000 Unaffected ï

System Timer
Interrupt_0
Control
Register

SYSTimer_Int00Control 0x000A0300 0x00000000 Unaffected 2

System Timer
Interrupt_1
Control
Register

SYSTimer_Int01Control 0x000A0304 0x00000000 Unaffected 2

System Timer
Interrupt_2
Control
Register

SYSTimer_Int02Control 0x000A0308 0x00000000 Unaffected 2

System Timer
Interrupt_3
Control
Register

SYSTimer_Int03Control 0x000A030C 0x00000000 Unaffected 2

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 99 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

System Timer
Interrupt_4
Control
Register

SYSTimer_Int04Control 0x000A0310 0x00000000 Unaffected 2

System Timer
Control
Register

SYSTimer_Control 0x000A0314 0x00000000 Unaffected 1

System Timer
Prescale
Register

SYSTimer_Prescale 0x000A0318 0x00000000 Unaffected 1

Watchdog
Timer Control
Register

WDTTimer_Control 0x000A0340 0x00000000 Unaffected 2

Watchdog
Timer Reload
Value Register

WDTTimer_Reload 0x000A0344 0x0000000F Unaffected 1

Power On
Reset Register

POR_reg 0x000A0360 0x00000001 Unaffected 1

Clock Mask
Register

Clock Mask Register 0x000A0380 0x00003F0F Unaffected 1

Device ID
Register

Device_ID_Register 0x000A0400 Constantï
0x11100531

Constantï
0x11100531

3

Debug Control
Register

DBG_Ctrl 0x000A0404 0x00000000 Unaffected 1

Debug Trace
Buffer Control
Register

Dbg_TrcBuf_Ctrl 0x000A0408 0x00000000 Unaffected 1

Debug Trace
Buffer Base
Address
Register

Dbg_TrcBuf_Base 0x000A040C 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 0
Base Address
Register

Dbg_Brk00_Base 0x000A0410 0x00000000 Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 100 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Debug
Breakpoint/
Watchpoint 0
Data Register

Dbg_Brk00_Data 0x000A0414 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 0
Data Mask
Register

Dbg_Brk00_DataMask 0x000A0418 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 0
Mode Control
Register

Dbg_Brk00_Ctrl 0x000A041C 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 1
Base Address
Register

Dbg_Brk01_Base 0x000A0420 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 1
Data Register

Dbg_Brk01_Data 0x000A0424 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 1
Data Mask
Register

Dbg_Brk01_DataMask 0x000A0428 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 1
Mode Control
Register

Dbg_Brk01_Ctrl 0x000A042C 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 2
Base Address
Register

Dbg_Brk02_Base 0x000A0430 0x00000000 Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 101 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Debug
Breakpoint/
Watchpoint 2
Data Register

Dbg_Brk02_Data 0x000A0434 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 2
Data Mask
Register

Dbg_Brk02_DataMask 0x000A0438 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 2
Mode Control
Register

Dbg_Brk02_Ctrl 0x000A043C 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 3
Base Address
Register

Dbg_Brk03_Base 0x000A0440 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 3
Data Register

Dbg_Brk03_Data 0x000A0444 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 0
Data Mask
Register

Dbg_Brk03_DataMask 0x000A0448 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 3
Mode Control
Register

Dbg_Brk03_Ctrl 0x000A044C 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 4
Base Address
Register

Dbg_Brk04_Base 0x000A0450 0x00000000 Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 102 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Debug
Breakpoint/
Watchpoint 4
Data Register

Dbg_Brk04_Data 0x000A0454 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 0
Data Mask
Register

Dbg_Brk04_DataMask 0x000A0458 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 4
Mode Control
Register

Dbg_Brk04_Ctrl 0x000A045C 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 5
Base Address
Register

Dbg_Brk05_Base 0x000A0460 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 5
Data Register

Dbg_Brk05_Data 0x000A0464 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 5
Data Mask
Register

Dbg_Brk05_DataMask 0x000A0468 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 5
Mode Control
Register

Dbg_Brk05_Ctrl 0x000A046C 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 6
Base Address
Register

Dbg_Brk06_Base 0x000A0470 0x00000000 Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 103 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Debug
Breakpoint/
Watchpoint 6
Data Register

Dbg_Brk06_Data 0x000A0474 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 6
Data Mask
Register

Dbg_Brk06_DataMask 0x000A0478 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 6
Mode Control
Register

Dbg_Brk06_Ctrl 0x000A047C 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 7
Base Address
Register

Dbg_Brk07_Base 0x000A0480 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 7
Data Register

Dbg_Brk07_Data 0x000A0484 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 7
Data Mask
Register

Dbg_Brk07_DataMask 0x000A0488 0x00000000 Unaffected 1

Debug
Breakpoint/
Watchpoint 7
Mode Control
Register

Dbg_Brk07_Ctrl 0x000A048C 0x00000000 Unaffected 1

ADC Control
Register

A2D0_ControlRegister 0x000A0600 0x00000000 Unaffected 2

ADC Start
Register

A2D0_StartRegister 0x000A0604 0x00000000 Unaffected ï

ADC Data
Available Flag
Register

A2D0_DataAvailableRegister 0x000A0608 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 104 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

ADC Channel
0 Data
Register

A2D0_Ch0DataRegister 0x000A060C 0x00000000 Unaffected ï

ADC Channel
1 Data
Register

A2D0_Ch1DataRegister 0x000A0610 0x00000000 Unaffected ï

ADC Channel
2 Data
Register

A2D0_Ch2DataRegister 0x000A0614 0x00000000 Unaffected ï

ADC Channel
3 Data
Register

A2D0_Ch3DataRegister 0x000A0618 0x00000000 Unaffected ï

ADC Channel
4 Data
Register

A2D0_Ch4DataRegister 0x000A061C 0x00000000 Unaffected ï

ADC Channel
5 Data
Register

A2D0_Ch5DataRegister 0x000A0620 0x00000000 Unaffected ï

ADC Channel
6 Data
Register

A2D0_Ch6DataRegister 0x000A0624 0x00000000 Unaffected ï

ADC Channel
7 Data
Register

A2D0_Ch7DataRegister 0x000A0628 0x00000000 Unaffected ï

Chip Select 0
Control
Register

BIU_CS0_Control 0x000A0680 0x00000245
or

0x00000205,
based on
size pin

Unaffected 1

Chip Select 0
Timing
Register

BIU_CS0_Timing 0x000A0684 0x31811031 Unaffected 1

Chip Select 1
Control
Register

BIU_CS1_Control 0x000A0688 0x00000000 Unaffected 1

Chip Select 1
Timing
Register

BIU_CS1_Timing 0x000A068C 0x31811031 Unaffected 1

Chip Select 2
Control
Register

BIU_CS2_Control 0x000A0690 0x00000000 Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 105 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Chip Select 2
Timing
Register

BIU_CS2_Timing 0x000A0694 0x31811031 Unaffected 1

Chip Select 3
Control
Register

BIU_CS3_Control 0x000A0698 0x00000000 Unaffected 1

Chip Select 3
Timing
Register

BIU_CS3_Timing 0x000A069C 0x31811031 Unaffected 1

Chip Select 4
Control
Register

BIU_CS4_Control 0x000A06A0 0x00000000 Unaffected 1

Chip Select 4
Timing
Register

BIU_CS4_Timing 0x000A06A4 0x31811031 Unaffected 1

Chip Select 5
Control
Register

BIU_CS5_Control 0x000A06A8 0x00000000 Unaffected 1

Chip Select 5
Timing
Register

BIU_CS5_Timing 0x000A06AC 0x31811031 Unaffected 1

Chip Select 6
Control
Register

BIU_CS6_Control 0x000A06B0 0x00000000 Unaffected 1

Chip Select 6
Timing
Register

BIU_CS6_Timing 0x000A06B4 0x31811031 Unaffected 1

Chip Select 7
Control
Register

BIU_CS7_Control 0x000A06B8 0x00000000 Unaffected 1

Chip Select 7
Timing
Register

BIU_CS7_Timing 0x000A06BC 0x31811031 Unaffected 1

External Bus
Priority
Register

BIU_Priority 0x000A0700 0x00000000 Unaffected 1

External Bus
Default Timing
Register

BIU_Def_Timing 0x000A0704 0x18E11011 Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 106 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

SDRAM
Timing
Parameter 0
Register

SDRAM_Timing_0 0x000A0800 0x00a22602 Unaffected 1

SDRAM
Timing
Parameter 1
Register

SDRAM_Timing_1 0x000A0804 0x00480820 Unaffected 1

SDRAM
Configuration 0
Register

SDRAM_Config_0 0x000A0808 0x00001226 Unaffected 1

SDRAM
Configuration 1
Register

SDRAM_Config_1 0x000A080C 0x00000000 Unaffected 1

SDRAM
External Bank
0 Configuration
Register

SDRAM_Ext_Bank_0 0x000A0810 0x00001800 Unaffected 1

SDRAM
External Bank
1 Configuration
Register

SDRAM_Ext_Bank_1 0x000A0814 0x00000820 Unaffected 1

SDRAM
External Bank
2 Configuration
Register

SDRAM_Ext_Bank_2 0x000A0818 0x00000840 Unaffected 1

SDRAM
External Bank
3 Configuration
Register

SDRAM_Ext_Bank_3 0x000A081C 0x00000860 Unaffected 1

SDRAM
External Bank
4 Configuration
Register

SDRAM_Ext_Bank_4 0x000A0820 0x00000880 Unaffected 1

SDRAM
External Bank
5 Configuration
Register

SDRAM_Ext_Bank_5 0x000A0824 0x000008A0 Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 107 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

SDRAM
External Bank
6 Configuration
Register

SDRAM_Ext_Bank_6 0x000A0828 0x000008C0 Unaffected 1

SDRAM
External Bank
7 Configuration
Register

SDRAM_Ext_Bank_7 0x000A082C 0x000008E0 Unaffected 1

External
Interrupt_0
Control
Register

IntControlCh0 0x000A0900 0x00000000 Unaffected 2, 5

External
Interrupt_1
Control
Register

IntControlCh1 0x000A0904 0x00000000 Unaffected 2, 5

External
Interrupt_2
Control
Register

IntControlCh2 0x000A0908 0x00000000 Unaffected 2, 5

External
Interrupt_3
Control
Register

IntControlCh3 0x000A090C 0x00000000 Unaffected 2, 5

External
Interrupt_4
Control
Register

IntControlCh4 0x000A0910 0x00000000 Unaffected 2, 5

External
Interrupt_5
Control
Register

IntControlCh5 0x000A0914 0x00000000 Unaffected 2, 5

External
Interrupt_6
Control
Register

IntControlCh6 0x000A0918 0x00000000 Unaffected 2, 5

External
Interrupt_7
Control
Register

IntControlCh7 0x000A091C 0x00000000 Unaffected 2, 5

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 108 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Context_0
Software
Interrupt
Control
Register

CTX0_INT_CTRL 0x000A0980 0x00000000 Unaffected ï

Context_1
Software
Interrupt
Control
Register

CTX1_INT_CTRL 0x000A0984 0x00000000 Unaffected ï

Context_2
Software
Interrupt
Control
Register

CTX2_INT_CTRL 0x000A0988 0x00000000 Unaffected ï

Context_3
Software
Interrupt
Control
Register

CTX3_INT_CTRL 0x000A098C 0x00000000 Unaffected ï

Context_4
Software
Interrupt
Control
Register

CTX4_INT_CTRL 0x000A0990 0x00000000 Unaffected ï

MAC Filter
Mode and
Status Register

PDMA_MAC_filter_mode 0x000A0A00 0x00000000 Unaffected ï

MAC Filter
Data Write
Register

PDMA_filter_data_write_head 0x000A0A04 0x00000000 Unaffected ï

MAC Filter
Data Read
Register

PDMA_filter_data_read_head 0x000A0A08 0x00000000 Unaffected ï

PMU Channel
0A Control
Register

PDMACh0A_Control 0x000A0A40 0x00000000 Unaffected 2

PMU Channel
0A Status
Register

PDMACh0A_Status 0x000A0A44 0x00000400 Unaffected 5

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 109 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU Channel
0A Transmit
Packet Size
Register

PDMACh0A_PckXmitSize 0x000A0A48 0x00000000 Unaffected ï

PMU Channel
0A Receive
Packet Size
Register

PDMACh0A_PckRcvSize 0x000A0A4C 0x00000000 Unaffected ï

PMU Channel
0A Transmit
Frame Buffer
Start Address
Register

PDMACh0A_XmitFBufStart 0x000A0A50 0x00000000 Unaffected ï

PMU Channel
0A Transmit
Frame Buffer
End Address
Register

PDMACh0A_XmitFBufEnd 0x000A0A54 0x00000003 Unaffected ï

PMU channel
0A Transmit
Frame Buffer
Read Pointer

PDMACh0A_XmitFBufRdPtr 0x000A0A58 0x00000000 Unaffected ï

PMU channel
0A Transmit
Frame Buffer
Write Pointer

PDMACh0A_XmitFBufWrPtr 0x000A0A5C 0x00000000 Unaffected ï

PMU Channel
0A Receive
Frame Buffer
Start Address
Register

PDMACh0A_RcvFBufStart 0x000A0A60 0x00000000 Unaffected ï

PMU Channel
0A Receive
Frame Buffer
End Address
Register

PDMACh0A_RcvFBufEnd 0x000A0A64 0x00000003 Unaffected ï

PMU channel
0A Receive
Frame Buffer
Read Pointer

PDMACh0A_RcvFBufRdPtr 0x000A0A68 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 110 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU channel
0A Receive
Frame Buffer
Write Pointer

PDMACh0A_RcvFBufWrPtr 0x000A0A6C 0x00000000 Unaffected ï

PMU Channel
0A Transmit
Data FIFO
Register

PDMACh0A_Xmit_Data 0x000A0A70 N/A Unaffected ï

PMU Channel
0A Receive
Data FIFO
Register

PDMACh0A_Rcv_Data 0x000A0A74 N/A Unaffected ï

PMU Channel
0B Control
Register

PDMACh0B_Control 0x000A0A80 0x00000000 Unaffected 2

PMU Channel
0B Status
Register

PDMACh0B_Status 0x000A0A84 0x00000400 Unaffected 5

PMU Channel
0B Transmit
Packet Size
Register

PDMACh0B_PckXmitSize 0x000A0A88 0x00000000 Unaffected ï

PMU Channel
0B Receive
Packet Size
Register

PDMACh0B_PckRcvSize 0x000A0A8C 0x00000000 Unaffected ï

PMU Channel
0B Transmit
Frame Buffer
Start Address
Register

PDMACh0B_XmitFBufStart 0x000A0A90 0x00000000 Unaffected ï

PMU Channel
0B Transmit
Frame Buffer
End Address
Register

PDMACh0B_XmitFBufEnd 0x000A0A94 0x00000003 Unaffected ï

PMU channel
0B Transmit
Frame Buffer
Read Pointer

PDMACh0B_XmitFBufRdPtr 0x000A0A98 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 111 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU channel
0B Transmit
Frame Buffer
Write Pointer

PDMACh0B_XmitFBufWrPtr 0x000A0A9C 0x00000000 Unaffected ï

PMU Channel
0B Receive
Frame Buffer
Start Address
Register

PDMACh0B_RcvFBufStart 0x000A0AA0 0x00000000 Unaffected ï

PMU Channel
0B Receive
Frame Buffer
End Address
Register

PDMACh0B_RcvFBufEnd 0x000A0AA4 0x00000003 Unaffected ï

PMU channel
0B Receive
Frame Buffer
Read Pointer

PDMACh0B_RcvFBufRdPtr 0x000A0AA8 0x00000000 Unaffected ï

PMU channel
0B Receive
Frame Buffer
Write Pointer

PDMACh0B_RcvFBufWrPtr 0x000A0AAC 0x00000000 Unaffected ï

PMU Channel
0B Transmit
Data FIFO
Register

PDMACh0B_Xmit_Data 0x000A0AB0 N/A Unaffected ï

PMU Channel
0B Receive
Data FIFO
Register

PDMACh0B_Rcv_Data 0x000A0AB4 N/A Unaffected ï

PMU Channel
1A Control
Register

PDMACh1A_Control 0x000A0AC0 0x00000000 Unaffected 2

PMU Channel
1A Status
Register

PDMACh1A_Status 0x000A0AC4 0x00000400 Unaffected 5

PMU Channel
1A Transmit
Packet Size
Register

PDMACh1A_PckXmitSize 0x000A0AC8 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 112 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU Channel
1A Receive
Packet Size
Register

PDMACh1A_PckRcvSize 0x000A0ACC 0x00000000 Unaffected ï

PMU Channel
1A Transmit
Frame Buffer
Start Address
Register

PDMACh1A_XmitFBufStart 0x000A0AD0 0x00000000 Unaffected ï

PMU Channel
1A Transmit
Frame Buffer
End Address
Register

PDMACh1A_XmitFBufEnd 0x000A0AD4 0x00000003 Unaffected ï

PMU channel
1A Transmit
Frame Buffer
Read Pointer

PDMACh1A_XmitFBufRdPtr 0x000A0AD8 0x00000000 Unaffected ï

PMU channel
1A Transmit
Frame Buffer
Write Pointer

PDMACh1A_XmitFBufWrPtr 0x000A0ADC 0x00000000 Unaffected ï

PMU Channel
1A Receive
Frame Buffer
Start Address
Register

PDMACh1A_RcvFBufStart 0x000A0AE0 0x00000000 Unaffected ï

PMU Channel
1A Receive
Frame Buffer
End Address
Register

PDMACh1A_RcvFBufEnd 0x000A0AE4 0x00000003 Unaffected ï

PMU channel
1A Receive
Frame Buffer
Read Pointer

PDMACh1A_RcvFBufRdPtr 0x000A0AE8 0x00000000 Unaffected ï

PMU channel
1A Receive
Frame Buffer
Write Pointer

PDMACh1A_RcvFBufWrPtr 0x000A0AEC 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 113 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU Channel
1A Transmit
Data FIFO
Register

PDMACh1A_Xmit_Data 0x000A0AF0 N/A Unaffected ï

PMU Channel
1A Receive
Data FIFO
Register

PDMACh1A_Rcv_Data 0x000A0AF4 N/A Unaffected ï

PMU Channel
1B Control
Register

PDMACh1B_Control 0x000A0B00 0x00000000 Unaffected 2

PMU Channel
1B Status
Register

PDMACh1B_Status 0x000A0B04 0x00000400 Unaffected 5

PMU Channel
1B Transmit
Packet Size
Register

PDMACh1B_PckXmitSize 0x000A0B08 0x00000000 Unaffected ï

PMU Channel
1B Receive
Packet Size
Register

PDMACh1B_PckRcvSize 0x000A0B0C 0x00000000 Unaffected ï

PMU Channel
1B Transmit
Frame Buffer
Start Address
Register

PDMACh1B_XmitFBufStart 0x000A0B10 0x00000000 Unaffected ï

PMU Channel
1B Transmit
Frame Buffer
End Address
Register

PDMACh1B_XmitFBufEnd 0x000A0B14 0x00000003 Unaffected ï

PMU channel
1B Transmit
Frame Buffer
Read Pointer

PDMACh1B_XmitFBufRdPtr 0x000A0B18 0x00000000 Unaffected ï

PMU channel
1B Transmit
Frame Buffer
Write Pointer

PDMACh1B_XmitFBufWrPtr 0x000A0B1C 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 114 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU Channel
1B Receive
Frame Buffer
Start Address
Register

PDMACh1B_RcvFBufStart 0x000A0B20 0x00000000 Unaffected ï

PMU Channel
1B Receive
Frame Buffer
End Address
Register

PDMACh1B_RcvFBufEnd 0x000A0B24 0x00000003 Unaffected ï

PMU channel
1B Receive
Frame Buffer
Read Pointer

PDMACh1B_RcvFBufRdPtr 0x000A0B28 0x00000000 Unaffected ï

PMU channel
1B Receive
Frame Buffer
Write Pointer

PDMACh1B_RcvFBufWrPtr 0x000A0B2C 0x00000000 Unaffected ï

PMU Channel
1B Transmit
Data FIFO
Register

PDMACh1B_Xmit_Data 0x000A0B30 N/A Unaffected ï

PMU Channel
1B Receive
Data FIFO
Register

PDMACh1B_Rcv_Data 0x000A0B34 N/A Unaffected ï

PMU Channel
2A Control
Register

PDMACh2A_Control 0x000A0B40 0x00000000 Unaffected 2

PMU Channel
2A Status
Register

PDMACh2A_Status 0x000A0B44 0x00000400 Unaffected 5

PMU Channel
2A Transmit
Packet Size
Register

PDMACh2A_PckXmitSize 0x000A0B48 0x00000000 Unaffected ï

PMU Channel
2A Receive
Packet Size
Register

PDMACh2A_PckRcvSize 0x000A0B4C 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 115 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU Channel
2A Transmit
Frame Buffer
Start Address
Register

PDMACh2A_XmitFBufStart 0x000A0B50 0x00000000 Unaffected ï

PMU Channel
2A Transmit
Frame Buffer
End Address
Register

PDMACh2A_XmitFBufEnd 0x000A0B54 0x00000003 Unaffected ï

PMU channel
2A Transmit
Frame Buffer
Read Pointer

PDMACh2A_XmitFBufRdPtr 0x000A0B58 0x00000000 Unaffected ï

PMU channel
2A Transmit
Frame Buffer
Write Pointer

PDMACh2A_XmitFBufWrPtr 0x000A0B5C 0x00000000 Unaffected ï

PMU Channel
2A Receive
Frame Buffer
Start Address
Register

PDMACh2A_RcvFBufStart 0x000A0B60 0x00000000 Unaffected ï

PMU Channel
2A Receive
Frame Buffer
End Address
Register

PDMACh2A_RcvFBufEnd 0x000A0B64 0x00000003 Unaffected ï

PMU Channel
2A Receive
Frame Buffer
Read Pointer

PDMACh2A_RcvFBufRdPtr 0x000A0B68 0x00000000 Unaffected ï

PMU Channel
2A Receive
Frame Buffer
Write Pointer

PDMACh2A_RcvFBufWrPtr 0x000A0B6C 0x00000000 Unaffected ï

PMU Channel
2A Transmit
Data FIFO
Register

PDMACh2A_Xmit_Data 0x000A0B70 N/A Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 116 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU Channel
2A Receive
Data FIFO
Register

PDMACh2A_Rcv_Data 0x000A0B74 N/A Unaffected ï

PMU Channel
2B Control
Register

PDMACh2B_Control 0x000A0B80 0x00000000 Unaffected 2

PMU Channel
2B Status
Register

PDMACh2B_Status 0x000A0B84 0x00000400 Unaffected 5

PMU Channel
2B Transmit
Packet Size
Register

PDMACh2B_PckXmitSize 0x000A0B88 0x00000000 Unaffected ï

PMU Channel
2B Receive
Packet Size
Register

PDMACh2B_PckRcvSize 0x000A0B8C 0x00000000 Unaffected ï

PMU Channel
2B Transmit
Frame Buffer
Start Address
Register

PDMACh2B_XmitFBufStart 0x000A0B90 0x00000000 Unaffected ï

PMU Channel
2B Transmit
Frame Buffer
End Address
Register

PDMACh2B_XmitFBufEnd 0x000A0B94 0x00000003 Unaffected ï

PMU Channel
2B Transmit
Frame Buffer
Read Pointer

PDMACh2B_XmitFBufRdPtr 0x000A0B98 0x00000000 Unaffected ï

PMU Channel
2B Transmit
Frame Buffer
Write Pointer

PDMACh2B_XmitFBufWrPtr 0x000A0B9C 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 117 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU Channel
2B Receive
Frame Buffer
Start Address
Register

PDMACh2B_RcvFBufStart 0x000A0BA0 0x00000000 Unaffected ï

PMU Channel
2B Receive
Frame Buffer
End Address
Register

PDMACh2B_RcvFBufEnd 0x000A0BA4 0x00000003 Unaffected ï

PMU Channel
2B Receive
Frame Buffer
Read Pointer

PDMACh2B_RcvFBufRdPtr 0x000A0BA8 0x00000000 Unaffected ï

PMU Channel
2B Receive
Frame Buffer
Write Pointer

PDMACh2B_RcvFBufWrPtr 0x000A0BAC 0x00000000 Unaffected ï

PMU Channel
2B Transmit
Data FIFO
Register

PDMACh2B_Xmit_Data 0x000A0BB0 N/A Unaffected ï

PMU Channel
2B Receive
Data FIFO
Register

PDMACh2B_Rcv_Data 0x000A0BB4 N/A Unaffected ï

PMU Channel
3A Control
Register

PDMACh3A_Control 0x000A0BC0 0x00000000 Unaffected 2

PMU Channel
3A Status
Register

PDMACh3A_Status 0x000A0BC4 0x00000400 Unaffected 5

PMU Channel
3A Transmit
Packet Size
Register

PDMACh3A_PckXmitSize 0x000A0BC8 0x00000000 Unaffected ï

PMU Channel
3A Receive
Packet Size
Register

PDMACh3A_PckRcvSize 0x000A0BCC 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 118 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU Channel
3A Transmit
Frame Buffer
Start Address
Register

PDMACh3A_XmitFBufStart 0x000A0BD0 0x00000000 Unaffected ï

PMU Channel
3A Transmit
Frame Buffer
End Address
Register

PDMACh3A_XmitFBufEnd 0x000A0BD4 0x00000003 Unaffected ï

PMU Channel
3A Transmit
Frame Buffer
Read Pointer

PDMACh3A_XmitFBufRdPtr 0x000A0BD8 0x00000000 Unaffected ï

PMU Channel
3A Transmit
Frame Buffer
Write Pointer

PDMACh3A_XmitFBufWrPtr 0x000A0BDC 0x00000000 Unaffected ï

PMU Channel
3A Receive
Frame Buffer
Start Address
Register

PDMACh3A_RcvFBufStart 0x000A0BE0 0x00000000 Unaffected ï

PMU Channel
3A Receive
Frame Buffer
End Address
Register

PDMACh3A_RcvFBufEnd 0x000A0BE4 0x00000003 Unaffected ï

PMU Channel
3A Receive
Frame Buffer
Read Pointer

PDMACh3A_RcvFBufRdPtr 0x000A0BE8 0x00000000 Unaffected ï

PMU Channel
3A Receive
Frame Buffer
Write Pointer

PDMACh3A_RcvFBufWrPtr 0x000A0BEC 0x00000000 Unaffected ï

PMU Channel
3A Transmit
Data FIFO
Register

PDMACh3A_Xmit_Data 0x000A0BF0 N/A Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 119 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU Channel
3A Receive
Data FIFO
Register

PDMACh3A_Rcv_Data 0x000A0BF4 N/A Unaffected ï

PMU Channel
3B Control
Register

PDMACh3B_Control 0x000A0C00 0x00000000 Unaffected 2

PMU Channel
3B Status
Register

PDMACh3B_Status 0x000A0C04 0x00000400 Unaffected 5

PMU Channel
3B Transmit
Packet Size
Register

PDMACh3B_PckXmitSize 0x000A0C08 0x00000000 Unaffected ï

PMU Channel
3B Receive
Packet Size
Register

PDMACh3B_PckRcvSize 0x000A0C0C 0x00000000 Unaffected ï

PMU Channel
3B Transmit
Frame Buffer
Start Address
Register

PDMACh3B_XmitFBufStart 0x000A0C10 0x00000000 Unaffected ï

PMU Channel
3B Transmit
Frame Buffer
End Address
Register

PDMACh3B_XmitFBufEnd 0x000A0C14 0x00000003 Unaffected ï

PMU Channel
3B Transmit
Frame Buffer
Read Pointer

PDMACh3B_XmitFBufRdPtr 0x000A0C18 0x00000000 Unaffected ï

PMU Channel
3B Transmit
Frame Buffer
Write Pointer

PDMACh3B_XmitFBufWrPtr 0x000A0C1C 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 120 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

PMU Channel
3B Receive
Frame Buffer
Start Address
Register

PDMACh3B_RcvFBufStart 0x000A0C20 0x00000000 Unaffected ï

PMU Channel
3B Receive
Frame Buffer
End Address
Register

PDMACh3B_RcvFBufEnd 0x000A0C24 0x00000003 Unaffected ï

PMU Channel
3B Receive
Frame Buffer
Read Pointer

PDMACh3B_RcvFBufRdPtr 0x000A0C28 0x00000000 Unaffected ï

PMU Channel
3B Receive
Frame Buffer
Write Pointer

PDMACh3B_RcvFBufWrPtr 0x000A0C2C 0x00000000 Unaffected ï

PMU Channel
3B Transmit
Data FIFO
Register

PDMACh3B_Xmit_Data 0x000A0C30 N/A Unaffected ï

PMU Channel
3B Receive
Data FIFO
Register

PDMACh3B_Rcv_Data 0x000A0C34 N/A Unaffected ï

Reserved Reserved 0x000A0C40ï
0x001A10FC

ï ï ï

Reserved Reserved 0x000A1100 ï ï ï

Reserved Reserved 0x000A1104 ï ï ï

Reserved Reserved 0x000A1108 ï ï ï

Context_0
Software
Interrupt
Actuation
Register

SWINTACT0 0x000A110C 0x00000000 Unaffected ï

Context_1
Claim Register

CTX1_CLAIM 0x000A1110 0x00000000 0x00000000 4

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 121 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Context_1
Pending
Contexts
Register

CTX1_PENDING 0x000A1114 0x00000000 0x00000000 3

Context_1
Priority
Inheritance
Register

CTX1_PRI_INHER 0x000A1118 0x00000000 0x00000000 3

Context_1
Software
Interrupt
Actuation
Register

SWINTACT1 0x000A111C 0x00000000 Unaffected ï

Context_2
Claim Register

CTX2_CLAIM 0x000A1120 0x00000000 0x00000000 4

Context_2
Pending
Contexts
Register

CTX2_PENDING 0x000A1124 0x00000000 0x00000000 3

Context_2
Priority
Inheritance
Register

CTX2_PRI_INHER 0x000A1128 0x00000000 0x00000000 3

Context_2
Software
Interrupt
Actuation
Register

SWINTACT2 0x000A112C 0x00000000 Unaffected ï

Context_3
Claim Register

CTX3_CLAIM 0x000A1130 0x00000000 0x00000000 4

Context_3
Pending
Contexts
Register

CTX3_PENDING 0x000A1134 0x00000000 0x00000000 3

Context_3
Priority
Inheritance
Register

CTX3_PRI_INHER 0x000A1138 0x00000000 0x00000000 3

Context_3
Software
Interrupt
Actuation
Register

SWINTACT3 0x000A113C 0x00000000 Unaffected ï

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 122 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Context_4
Claim Register

CTX4_CLAIM 0x000A1140 0x00000000 0x00000000 4

Context_4
Pending
Contexts
Register

CTX4_PENDING 0x000A1144 0x00000000 0x00000000 3

Context_4
Priority
Inheritance
Register

CTX4_PRI_INHER 0x000A1148 0x00000000 0x00000000 3

Context_4
Software
Interrupt
Actuation
Register

SWINTACT4 0x000A114C 0x00000000 Unaffected ï

Reserved Reserved 0x000A1150ï
0x000A80FC

ï ï ï

Context_0
Data Registers

CTX0_D0ïCTX0_D7 0x000A8100ï
0x000A811C

Unaffected Unaffected 1

Context_0
Address
Registers

CTX0_A0ïCTX0_A6 0x000A8120ï
0x000A8138

Unaffected Unaffected 1

Context_0
A7/User Stack
Pointer (USP)

CTX0_A7 (USP) 0x000A813C Unaffected Unaffected 1

Context_0
A7/Supervisor
Stack Pointer
(SSP)

CTX0_A7ô (SSP) 0x000A8140 Loaded from
Vector 0

Loaded
from Vector

0

1

Context_0
Program
Counter (PC)

CTX0_PC 0x000A8144 Loaded from
Vector 0

Loaded
from Vector

0

1

Context_0
Status Register
(SR)

CTX0_SR 0x000A8148 0x2700 0x2700 1

Context_0
Vector Base
Register (VBR)

CTX0_VBR 0x000A814C 0x0000 0x0000 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 123 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Context_0
Alternate
Function Code
(SFC)

CTX0_SFC 0x000A8150 Unaffected Unaffected 1

Context_0
Alternate
Function Code
(DFC)

CTX0_DFC 0x000A8154 Unaffected Unaffected 1

Context_1
Data Registers

CTX1_D0ïCTX1_D7 0x000A8180ï
0x000A819C

Unaffected Unaffected 1

Context_1
Address
Registers

CTX1_A0ïCTX1_A6 0x000A81A0ï
0x000A81B8

Unaffected Unaffected 1

Context_1
A7/User Stack
Pointer (USP)

CTX1_A7 (USP) 0x000A81BC Unaffected Unaffected 1

Context_1
A7/Supervisor
Stack Pointer
(SSP)

CTX1_A7ô (SSP) 0x000A81C0 Unaffected Unaffected 1

Context_1
Program
Counter (PC)

CTX1_PC 0x000A81C4 Unaffected Unaffected 1

Context_1
Status Register
(SR)

CTX1_SR 0x000A81C8 0x2700 Unaffected 1

Context_1
Vector Base
Register (VBR)

CTX1_VBR 0x000A81CC 0x0000 Unaffected 1

Context_1
Alternate
Function Code
(SFC)

CTX1_SFC 0x000A81D0 Unaffected Unaffected 1

Context_1
Alternate
Function Code
(DFC)

CTX1_DFC 0x000A81D4 Unaffected Unaffected 1

Context_2
Data Registers

CTX2_D0ïCTX2_D7 0x000A8200ï
0x000A821C

Unaffected Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 124 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Context_2
Address
Registers

CTX2_A0ïCTX2_A6 0x000A8220ï
0x000A8238

Unaffected Unaffected 1

Context_2
A7/User Stack
Pointer (USP)

CTX2_A7 (USP) 0x000A823C Unaffected Unaffected 1

Context_2
A7/Supervisor
Stack Pointer
(SSP)

CTX2_A7ô (SSP) 0x000A8240 Unaffected Unaffected 1

Context_2
Program
Counter (PC)

CTX2_PC 0x000A8244 Unaffected Unaffected 1

Context_2
Status Register
(SR)

CTX2_SR 0x000A8248 0x2700 Unaffected 1

Context_2
Vector Base
Register (VBR)

CTX2_VBR 0x000A824C 0x0000 Unaffected 1

Context_2
Alternate
Function Code
(SFC)

CTX2_SFC 0x000A8250 Unaffected Unaffected 1

Context_2
Alternate
Function Code
(DFC)

CTX2_DFC 0x000A8254 Unaffected Unaffected 1

Context_3
Data Registers

CTX3_D0ïCTX3_D7 0x000A8280ï
0x000A829C

Unaffected Unaffected 1

Context_3
Address
Registers

CTX3_A0ïCTX3_A6 0x000A82A0ï
0x000A82B8

Unaffected Unaffected 1

Context_3
A7/User Stack
Pointer (USP)

CTX3_A7 (USP) 0x000A82BC Unaffected Unaffected 1

Context_3
A7/Supervisor
Stack Pointer
(SSP)

CTX3_A7ô (SSP) 0x000A82C0 Unaffected Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 125 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Context_3
Program
Counter (PC)

CTX3_PC 0x000A82C4 Unaffected Unaffected 1

Context_3
Status Register
(SR)

CTX3_SR 0x000A82C8 0x2700 Unaffected 1

Context_3
Vector Base
Register (VBR)

CTX3_VBR 0x000A82CC 0x0000 Unaffected 1

Context_3
Alternate
Function Code
(SFC)

CTX3_SFC 0x000A82D0 Unaffected Unaffected 1

Context_3
Alternate
Function Code
(DFC)

CTX3_DFC 0x000A82D4 Unaffected Unaffected 1

Context_4
Data Registers

CTX4_D0ïCTX4_D7 0x000A8300ï
0x000A831C

Unaffected Unaffected 1

Context_4
Address
Registers

CTX4_A0ïCTX4_A6 0x000A8320ï
0x000A8338

Unaffected Unaffected 1

Context_4
A7/User Stack
Pointer (USP)

CTX4_A7 0x000A833C Unaffected Unaffected 1

Context_4
A7/Supervisor
Stack Pointer
(SSP)

CTX4_A7ô 0x000A8340 Unaffected Unaffected 1

Context_4
Program
Counter (PC)

CTX4_PC 0x000A8344 Unaffected Unaffected 1

Context_4
Status Register
(SR)

CTX4_SR 0x000A8348 0x2700 Unaffected 1

Context_4
Vector Base
Register (VBR)

CTX4_VBR 0x000A834C 0x0000 Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 126 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Context_4
Alternate
Function Code
(SFC)

CTX4_SFC 0x000A8350 Unaffected Unaffected 1

Context_4
Alternate
Function Code
(DFC)

CTX4_DFC 0x000A8354 Unaffected Unaffected 1

MPU Block 0
to 15 Control
Registers

MPU_Blk00Ctrlï
MPU_Blk15Ctrl

0x000AA000ï
0x000AA03C

0x0000 Unaffected 1

MPU Block 0
to 15 Attribute
Registers

MPU_Blk00Attribï
MPU_Blk15Attrib

0x000AA080ï
0x000AA0BC

0x0000 Unaffected 1

Context_0
MPU Allocation
Register

CTX0_MPUAllocation 0x000AA100 0x0000 Unaffected 1

Context_1
MPU Allocation
Register

CTX1_MPUAllocation 0x000AA104 0x0000 Unaffected 1

Context_2
MPU Allocation
Register

CTX2_MPUAllocation 0x000AA108 0x0000 Unaffected 1

Context_3
MPU Allocation
Register

CTX3_MPUAllocation 0x000AA10C 0x0000 Unaffected 1

Context_4
MPU Allocation
Register

CTX4_MPUAllocation 0x000AA110 0x0000 Unaffected 1

Relocatable
Rapid
Execution
Memory
(RREM) Block
0 to 15 Control
Registers

DCACHE_RelocateBlk00ï
DCACHE_RelocateBlk15

0x000AA180ï
0x000AA1BC

0x0000 Unaffected 1

Context_0
Control
Register

CTX0_Control 0x000AA400 0x1F02 0x1F02 1

Context_1
Control
Register

CTX1_Control 0x000AA404 0x1800 Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 127 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Context_2
Control
Register

CTX2_Control 0x000AA408 0x1800 Unaffected 1

Context_3
Control
Register

CTX3_Control 0x000AA40C 0x1800 Unaffected 1

Context_4
Control
Register

CTX4_Control 0x000AA410 0x1800 Unaffected 1

Context_0
Maximum Time
Register

CTX0_MaxTime 0x000AA480 0x00fffe00 Unaffected 1

Context_1
Maximum Time
Register

CTX1_MaxTime 0x000AA484 0x00fffe00 Unaffected 1

Context_2
Maximum Time
Register

CTX2_MaxTime 0x000AA488 0x00fffe00 Unaffected 1

Context_3
Maximum Time
Register

CTX3_MaxTime 0x000AA48C 0x00fffe00 Unaffected 1

Context_4
Maximum Time
Register

CTX4_MaxTime 0x000AA490 0x00fffe00 Unaffected 1

Context_0
Timer Register

CTX0_Time 0x000AA500 0x0000 0x0000 1

Context_1
Timer Register

CTX1_Time 0x000AA504 0x0000 0x0000 1

Context_2
Timer Register

CTX2_Time 0x000AA508 0x0000 0x0000 1

Context_3
Timer Register

CTX3_Time 0x000AA50C 0x0000 0x0000 1

Context_4
Timer Register

CTX4_Time 0x000AA510 0x0000 0x0000 1

Context Timer
Clear Register

CTXN_TimeClr 0x000AA580 0x0000 0x0000 1

Context Idle
Timer Register

CTX_IdleTimer 0x000AA584 0x0000 0x0000 ï

Context Timer
Enable
Register

CTXN_TimeEn 0x000AA588 0x0000 Unaffected 1

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 128 of 313 1-888-824-4184

®

Table 5-20. Complete Register Address Map Table (Continued)

Block Name Base Address*
Major Reset

value
Minor

Reset value Notes

Faulted
Context
Register

CTX_FaultID 0x000AA600 0x0000 0x0000 3

Current
Context
Register

Current Context Register 0x000AA604 0x0000 0x0000 3

Notes:
* Base address shown in the table is the base offset. This address is OR-ed with the value in the Memory

Base Offset Register to adjust bits 30ï20. For example, the Memory Base Offset Register has a value of
0x00100000 at POR, thus the Faulted Context Register (CTX_FaultID) would be accessed at address
0x001AA600. If the Memory Base Offset Register is changed to address 0x70F00000 then the Faulted
Context Register (CTX_FaultID) is accessed at address 0x70FAA600.

1. Readable by all contexts, writable by only Context_0 (see Chapter 11, Access-Controlled Registers).
2. Certain fields in the register have restricted writes (see Chapter 11, Access-Controlled Registers).
3. Read only.
4. Context-specific. See Section 4.8.9, Context Claim Registers, for details.
5. Certain fields (typically status bits) of this register are evaluated on a continuous basis and therefore the

value of this register may be modified after reset to reflect the condition evaluated.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 129 of 313 1-888-824-4184

®

6. External Bus Interface

The fido1100 external bus interface to external memory and peripherals is configured by a set of

chip-select and bus-timing registers. The fido1100 also has a built-in SDRAM controller to

control the interface to SDRAM separately. The external address bus of the fido1100 is a 31-bit

bus, and the external data bus is configurable to support either an 8- or a 16-bit bus. This chapter

covers the following:

 Address and Data Bus

 External Bus Chip Select Control and Timing Registers (8 reg. pairs)

 External Bus Default Timing Register

 External Bus Priority Register

 SDRAM Controller Registers

 Startup and Operation of SDRAM Controller

 SDRAM Module Types Address Mapping (16-Bit Bus Width)

 SDRAM Module Types Address Mapping (8-Bit Bus Width)

 SDRAM External I/O Signal List

 External Bus Arbitration

The fido1100 is a 32-bit data bus internally and supports either a 16- or 8-bit data bus externally.

The external data bus size is selected at Reset depending on the value of the A_26_SIZE signal

(0 = 8-bit data bus, 1 = 16-bit data bus). See The fido Data Sheet Chapter 7, Reset, for a

description of reset processing. The primary features of the External Bus Interface include:

 Eight chip selects that provide eight configurable banks

ï Support of 8- or 16-bit external devices

ï An external device that can insert wait states into bus cycle

 Support of external bus master (with internal priority based on priority of currently

executing context/DMA)

 Management of non-aligned data accesses over the external bus

 Programmable memory timing per chip-select

ï Chip select delay

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 130 of 313 1-888-824-4184

®

ï Output enable delay

ï Write-enable timing

ï Variable number of wait states

If no on-board chip-select logic responds to a memory cycle, then it is assumed that external logic

is decoding the access and controlling the access timing via the RDY_N signal. If the RDY_N

signal is not asserted within 255 clocks from the beginning of the memory cycle, a bus fault is

generated. Table 6-1 lists the external bus interface signals.

Table 6-1. External Bus Interface Signal List

Signal Name Type Description

MEMCLK Output Memory clock used by external memory

D15ïD0 Bi-directional External data bus bits 15..0

A24ïA0 Output, tri-
stateable

External address bus bits 24..0 (Note: MSB of address bus is
Endian Control bit, and A30ïA25 are muxed)

A_25_RESET_D
ELAY

Muxed, Internal
Pull-up

Muxed pin, External Bus Interface address Bit [25] or POR
counter bypass

A_26_SIZE Muxed, Internal
Pull-up

Muxed pin, External Bus Interface address Bit [26] or data bus
size select (0 = 8-Bit, 1 = 16-Bit)

A27_CS7_N Muxed Muxed pin, External Bus Interface address Bit [27] or Chip
select 7 (chip select active low)

A28_CS6_N Muxed Muxed pin, External Bus Interface address Bit [28] or Chip
select 6 (chip select active low)

A29_CS5_N Muxed Muxed pin, External Bus Interface address Bit [29] or Chip
select 5 (chip select active low)

A30_CS4_N Muxed Muxed pin, External Bus Interface address Bit [30] or Chip
select 4 (chip select active low)

CS0_N Output Chip select 0 (chip select active low)

CS1_N Output Chip select 1 (chip select active low)

CS2_N Output Chip select 2 (chip select active low)

CS3_N Output Chip select 3 (chip select active low)

BE1_N
BE0_N

Output, tri-
stateable

Byte Enables, active low

OE_N Output, tri-
stateable

Output Enable

RW_N Output, tri-
stateable

Read/Write Control (write is active low)

RDY_N Input External Bus Ready (active low)

HOLDREQ_N Input External Bus Master Request (active low)

HOLDGNT_N Output External Bus Master Grant (active low)

6.1 Address and Data Bus

The fido1100 has a 32-bit address bus, supporting a 2-Gbyte memory space that can be accessed

as a little-endian or big-endian address space. Address Bits [30ï0] are used to address external

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 131 of 313 1-888-824-4184

®

devices and address Bit [31] serves as a big-endian/little-endian mode bit. Accesses to addresses

between 0x00000000 and 0x7FFFFFFF will be big-endian accesses. Accesses to addresses

between 0x80000000 and 0xFFFFFFFF will be little-endian accesses of memory space

0x00000000 to 0x7FFFFFFF (see Section 5.6, Endian Mode Control, for details).

6.2 External Bus Chip Select Control and Timing Registers

The fido1100 uses the registers listed below to control the operation and characteristics of the

External Bus. They are detailed in sections that follow:

 External Bus Chip Select Control Register

 External Bus Chip Select Timing Register

 External Bus Default Timing Register

 External Bus Priority Register

6.2.1 External Bus Chip Select Control Register_N (where N=0..7)

The External Bus Chip Select Control Register defines the location and size of the programmable

Chip Select. There are eight of these registers, one for each chip select. They are access-

controlled and writable by only the Master Context, Context_0 (see Chapter 11, Access-

Controlled Registers) (see Table 6-2).

Table 6-2. External Bus Chip Select Control Register

31ï12 11 10 9 8 7ï6 5 4 3ï0

Base
Address

Reserved Mode
Select

Output
Enable

SDRAM
Enable

Width Byte
Enable

Reserved Size

RW ï RW RW RW RW RW ï RW

Note: Reset value is CS0 =0x00000205 or 0x00000245 (256 Kbytes, 8/16-bit-wide devices dependent on
Size input at reset). CS1ïCS7 = 0x00000000.

 Bits [31ï12]ðBase Address Ÿ Specifies the beginning address for the CS block. Must be

a multiple of bank size (bank size is specified by bits 3..0)

Note: If the SDRAM Enable bit is 1, then only the upper 12 bits [31ï20] are

valid, and must match the value set in Bits [11ï0] of the appropriate SDRAM

External Bank register. The remaining bits of this field [19ï12] must be set

to ñ0.ò

 Bit [11]ðReserved

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 132 of 313 1-888-824-4184

®

 Bit [10]ðMode Select (0 Ÿ use chip select output, 1 Ÿ use address output)

Notes:

- This field only applies to muxed chip-select pins:

CS7 muxed with A27 (hardware signal A27_CS7_N)

CS6 muxed with A28 (hardware signal A28_CS6_N)

CS5 muxed with A29 (hardware signal A29_CS5_N)

CS4 muxed with A30 (hardware signal A30_CS4_N)

-Bit 10 only controls muxed cs/addr signals CS7/A27 - CS4/A30. On non-

muxed signals, it has no affect.

 Bit [9]ðChip Select Enable

ï 0ðDisable chip select signal

o Muxed CS/Addr signals will tristate. Non-muxed signals will drive high.

ï 1ðEnable chip select signal

o The muxed cs/addr signals will drive appropriately as set by bit 10. Non-

muxed signals will drive low as appropriate or operation.

 Bit [8]ðSDRAM Enable

ï 0ðAssociated memory is not SDRAM.

ï 1ðAssociated memory is SDRAM.

Note: When this flag is set all other fields (except Base Address, Mode Select,

Output Enable, and Size) in this register, as well as the External Bus Chip

Select Timing Register, are invalid. This enables the SDRAM Control

Registers.

 Bits [7ï6]ðWidth Ÿ Specifies the bus width of the attached peripheral. Determines the

byte lane of the bus used to access the external device (via the BE_N byte enable signals):

ï 00ð8-bit device, all data transferred as bytes on D[7ï0]

ï 01ð16-bit device, all data transferred as words on D[15ï0]. Unaligned word accesses

require two bus cycles

ï 10ðReserved

ï 11ðReserved

Note: Size input (sampled at reset) sets the Size field for CS0. This field

cannot be written to on CS0. It is latched at reset and cannot be overwritten

 Bit [5]ðByte Enable Ÿ Controls byte enable signal behavior when this chip select is

active

ï 0ðByte enable signals active for reads and write cycles

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 133 of 313 1-888-824-4184

®

ï 1ðByte enable signals become byte write enables (OR-ed with RW_N)

 Bit [4]ðReserved

 Bits [3ï0]ðSize Ÿ Specifies the total range covered by this CS:

ï 0000ð8 Kbytes

ï 0001ð16 Kbytes

ï 0010ð32 Kbytes

ï 0011ð64 Kbytes

ï 0100ð128 Kbytes

ï 0101ð256 Kbytes

ï 0110ð512 Kbytes

ï 0111ð1 Mbyte

ï 1000ð2 Mbytes

ï 1001ð2 Mbytes

ï 1010ð8 Mbytes

ï 1011ð16 Mbytes

ï 1100ð32 Mbytes

ï 1101ð64 Mbytes

ï 1110ð128 Mbytes

ï 1111ð256 Mbytes

To allow the SDRAM controller to operate properly, some fields of this register must be set up as

follows to enable the chip select to be in SDRAM mode:

 SDRAM_enable must be set to ñ1.ò

 output_enable must be set to ñ1.ò If configuring CS4-CS7, the mode_select must be set

to ñ0.ò

 The base_address Bits [31ï20] must be set to the base address of the SDRAM memory

attached to this chip select.

ï base_address Bits [19ï12] must be set to ñ0.ò

ï The 12-bit value set in Bits [31ï20] must match exactly with Bits [11ï0] of the

appropriate SDRAM external bank.

 The size must be properly set to the size of the SDRAM memory attached to this chip

select.

Note: The binary pattern for the size field in this register is different from the

BNKSIZE field in the SDRAM Configuration 0 Register.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 134 of 313 1-888-824-4184

®

There are eight Chip Selects for External Memory, and eight External Banks for the SDRAM

controller (further information is provided in the SDRAM Controller Registers section). When a

chip select is in SDRAM mode (SDRAM_enable = 1) it is controlled by the appropriate SDRAM

controllerôs external bank. CS0 is controlled by SDRAM External Bank 0. CS1 is connected to

External Bank 1, etc.

6.2.2 External Bus Chip Select Timing Register_N (where N=0..7)

The External Bus Chip Select Timing Register defines the timing of the programmable Chip

Selects. There are eight of these registers, one for each chip select. Some important notes follow:

 There are eight chip selects but one OE and one WE, these signals will adjust on an

individual basis to the CS in use for that cycle.

 For the internally generated chip selects, the external ready input signal (RDY_N) can be

enabled/disabled and the wait timing defined. However, if no on-board chip-select logic

responds to a memory cycle, then it is assumed that external logic is decoding the access.

For this type of memory access, the external RDY_N input signal will always be enabled

and will determine whether the cycle ends in a bus fault.

Note: If the RDY_N signal is not asserted (low) within 256 clocks from the

end of the TxWAIT period (see the External Bus Default Timing Register), a

bus fault is generated.

When the sdram_enable flag of the External Bus Chip Select Control Register is enabled, this

register is disabled for the given chip select (see Table 6-3). They are access-controlled and

writable by only the Master Context, Context_0 (see Chapter 11, Access-Controlled Registers).

Table 6-3. Chip Select Timing Register

31ï27 26ï22 21 20ï19 18ï16 15ï14 13ï12 11ï10 9ï8 7ï6 5ï4 3ï2 1ï0

TwWAIT TrWait RDY_ENABLE Reserved THLD Reserved TCS Reserved TOE Reserved TWEF Reserved TWER

RW RW RW ï RW R RW ï RW ï RW ï RW

Note: The default settings for the Chip Select Timing Register at POR or external reset are as follows:
CS0 loaded to 0x31811031 (suitable for most FLASH ROM; assumes CS0 will be used for RESET vector at
address 0x00000000):

TwWAITð6 clocks
TrWAITð6 clocks
THLDð1 clock
TCSð1 clock
TOEð0, coincident with CSn_N
TWEFð3 clocks
TWERð1 clock
RDY_ENABLEð0, disable external ready.

CS1ïCS7 unaffected by external reset (value retained).
CS1ïCS7 set to 0x31811031 as above by POR reset.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 135 of 313 1-888-824-4184

®

 Bits [31ï27]ðTwWAIT Ÿ Depends on RDY_ENABLE (Bit [21])

ï If RDY_ENABLE=0, TwWAIT specifies the width of the chip select active period for

the write cycle, allows for 0ï31 resulting in a wait time of 1ï32 clocks.

ï If RDY_ENABLE=1, TwWAIT specifies the wait time before the RDY_N line is first

sampled for the write cycle. This provides a max wait time of 484nS at 66 MHz,

anything greater than this will require the external RDY_N line and external logic.

 Bits [26ï22]ðTrWAIT Ÿ Depends on RDY_ENABLE (Bit [21])

ï If RDY_ENABLE=0, specifies the width of the chip select active period for the read

cycle, allows for 0ï31 resulting in a wait time of 1ï32 clocks.

ï If RDY_ENABLE=1, specifies the wait time before the RDY_N line is first sampled

for the read cycle. This provides a max wait time of 484nS at 66 MHz. Anything

greater than this will require the external RDY_N line and external logic.

 Bit [21]ðReady Enable Ÿ Use is described above

 Bits [20ï19]ðReserved

 Bits [18ï16]ðTHLD Ÿ Specifies the time between when the CSn_N and BEn_N signals

go inactive (hi) and the address is removed. Value is 0ï7 clocks.

 Bits [15ï14]ðReserved

 Bits [13ï12]ðTCS Ÿ Specifies the time between when the address bus is driven and the

CSn_N and BEn_N signals go active (low). Value is 0ï3 clocks.

 Bits [11ï10]ðReserved

 Bits [9ï8]ðTOE Ÿ Specifies the time between when the CSn_N and BEn_N signals go

active (low) and the OE signal goes active (low). Value is 0ï3 clocks.

 Bits [7ï6]ðReserved

 Bits [5ï4]ðTWEF Ÿ Specifies the time between when the CSn_N and BEn_N signals go

active (low) and the WE_N signal goes active (low). Value is 0ï3 clocks.

 Bits [3ï2]ðReserved

 Bits [1ï0]ðTWER Ÿ Specifies the time between when the WE_N signal goes inactive

(hi) and the CSn_N and BEn_N signals go inactive (hi). Value is 0ï3 clocks.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 136 of 313 1-888-824-4184

®

6.3 External Bus Default Timing Register

This register defines the default timing for all external bus memory accesses not specifically

mapped to either of the following: one of the internal peripherals or one of the 8 external chip

selects. There is but one of these registers. Once defined, all the unmapped external memory

cycles will be defined alike. This register is access-controlled and writable by only the Master

Context, Context_0 (see Chapter 11, Access-Controlled Registers).

For this type of memory access, the external RDY_N input signal will always be enabled and will

determine whether the cycle ends in a bus fault. If the RDY_N signal is not asserted (low) within

256 clocks from the end of the TwWAIT/TrWAIT period, a bus fault is generated (see Table 6-4).

Table 6-4. External Bus Default Timing Register

31ï27 26ï22 21 20ï19 18ï16 15ï14 13ï12 11ï10 9ï8 7ï6 5ï4 3ï2 1ï0

TwWAIT TrWait RDY_ENABLE
= 1

Reserved THLD Reserved TCS Reserved TOE Reserved TWEF Reserved TWER

RW RW R ï RW ï RW ï RW ï RW ï RW

Note: Reset value is 0x18E11011:
TwWAITð3 clocks
TrWAITð3 clocks
THLDð1 clock
TCSð1 clock
TOEð0, coincident with CSn_N
TWEFð1 clock
TWERð1clock
RDY_ENABLEð1, enable external ready

 Bits [31ï27]ðTwWait Ÿ Specifies the wait time before the RDY_N line is first sampled

for the write cycle. This provides a max wait time of 484nS at 66 MHz.

 Bits [26ï22]ðTrWait Ÿ Specifies the wait time before the RDY_N line is first sampled

for the read cycle. This provides a max wait time of 484nS at 66 MHz.

 Bit [21]ðRDY_ENABLE Ÿ The RDY_N input is always used for these external memory

cycles and as such, the RDY_ENABLE bit of this register is always forced to 1.

 Bits [20ï19]ðReserved

 Bits [18ï16]ðTHLD Ÿ Specifies the time between when the CSn_N and BEn_N signals

go inactive (hi) and the address is removed. Value is 0ï7 clocks.

 Bits [15ï14]ðReserved

 Bits [13ï12]ðTCS Ÿ Specifies the time between when the address bus is driven and the

CSn_N and BEn_N signals go active (low). Value is 0ï3 clocks.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 137 of 313 1-888-824-4184

®

 Bits [11ï10]ðReserved

 Bits [9ï8]ðTOE Ÿ Specifies the time between when the CSn_N and BEn_N signals go

active (low) and the OE signal goes active (low). Value is 0ï3 clocks.

 Bits [7ï6]ðReserved

 Bits [5ï4]ðTWEF Ÿ Specifies the time between when the CSn_N and BEn_N signals go

active (low) and the WE_N signal goes active (low). Value is 0ï3 clocks.

 Bits [3ï2]ðReserved

 Bits [1ï0]ðTWER Ÿ Specifies the time between when the WE_N signal goes inactive

(hi) and the CSn_N and BEn_N signals go inactive (hi). Value is 0ï3 clocks.

6.4 External Bus Priority Register

The External Bus Priority Register is used to assign the priority that an external bus master (via

request/grant) has relative to the internal fido1100 resources (i.e., the five contexts, the CPU DMA

controller, etc.) (see Table 6-5). This register is access-controlled and writable by only the Master

Context, Context_0 (see Chapter 11, Access-Controlled Registers).

Table 6-5. External Bus Priority Register

31ï3 2ï0

Reserved Priority

Reserved Priority

Note: Reset value is 0x00000000.

 Bits [31ï3]ðReserved

 Bits [2ï0]ðPriority Ÿ The priority the external bus is assigned, 0 is the lowest, 7 the

highest.

6.5 SDRAM Controller Registers

The fido1100 has a built-in SDRAM controller that can handle up to eight banks of external

SDRAM. These registers are access-controlled and writable by only the Master Context,

Context_0 (see Chapter 11, Access-Controlled Registers).

The registers used to program the SDRAM controller are presented in Table 6-6.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 138 of 313 1-888-824-4184

®

Table 6-6. Registers Used to Program the SDRAM Controller

Register Name Description

SDRAM_Timing_Parameter_0_Register SDRAM timing control register 0. A single, access-controlled
register, writable by only the Master Context (Context_0).

SDRAM_Timing_Parameter_1_Register SDRAM timing control register 1. A single, access-controlled
register, writable by only the Master Context (Context_0).

SDRAM_Configuration_0_Register SDRAM configuration control register 0. A single, access-
controlled register, writable by only the Master Context
(Context_0).

SDRAM_Configuration_1_Register SDRAM configuration control register 1. A single, access-
controlled register, writable by only the Master Context
(Context_0).

SDRAM_Ext_Bank_0_Register
SDRAM_Ext_Bank_1_Register
SDRAM_Ext_Bank_2_Register
SDRAM_Ext_Bank_3_Register
SDRAM_Ext_Bank_4_Register
SDRAM_Ext_Bank_5_Register
SDRAM_Ext_Bank_6_Register
SDRAM_Ext_Bank_7_Register

SDRAM external bank control registers (8 of these), one per
chip select region. Used to enable the bank and specify base
address. Access-Controlled registers, writable by only the
Master Context (Context_0).

It should be noted that the SDRAM controller is inactive unless Bit [10] in the Clock Mask

Register is set to logic 0 (see Chapter 10, Power Control, for details).

Listed below are the SDRAM registers. They are detailed in sections that follow:

 SDRAM Timing Parameter 0 Register

 SDRAM Timing Parameter 1 Register

 SDRAM Configuration 0 Register

 SDRAM Configuration 1 Register

 SDRAM External Bank Configuration Register_N (where N=0..7)

6.5.1 SDRAM Timing Parameter 0 Register

This is a single register used to set SDRAM timing parameters (see Table 6-7). It is access-

controlled and writable by only the Master Context, Context_0 (see Chapter 11, Access-

Controlled Registers).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 139 of 313 1-888-824-4184

®

Table 6-7. SDRAM Timing Parameter 0 Register

31ï20 19ï16 15 14ï12 11ï8 7ï6 5ï4 3ï2 1ï0

Reserved TRP Reserved TRCD TRF Reserved TWR Reserved TCL

ï RW ï RW RW ï RW ï RW

Note: Reset value is 0x00A22602.

 Bits [31ï20]ðReserved

 Bits [19ï16]ðTRP Ÿ Pre-charge cycle time. This parameter specifies the cycles needed

by the pre-charge command. That is, the next valid SDRAM command can be issued after

the time specified in this parameter.

 Bit [15]ðReserved

 Bits [14ï12]ðTRCD Ÿ RAS-to-CAS delay. This parameter specifies the minimum

period between active command and the following read/write command. The maximum

allowed. Value is 3.

 Bits [11ï8]ðTRF Ÿ Auto-refresh cycle time. This parameter specifies the time needed

by SDRAM to execute auto-refresh command. That is, the next valid SDRAM command

can be issued after the time specified in this parameter.

Note: The minimum value for this field is 3. If 1 or 2 is put here, it will cause

ñdouble refreshes.ò Although not harmful, they can be distracting.

 Bits [7ï6]ðReserved

 Bits [5ï4]ðTWR Ÿ Write-recovery time. This parameter specifies the period between

pre-charge and the last valid write data and the period between the last read data out and

write command.

 Bits [3ï2]ðReserved

 Bits [1ï0]ðTCL Ÿ CAS-latency. This parameter specifies the time between read

command and the first data out. Due to limitation of the read pipeline, the allowed CAS

latency is 2 or 3.

ï 00ðIllegal

ï 01ðIllegal

ï 10ðCAS=2

ï 11ðCAS=3

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 140 of 313 1-888-824-4184

®

6.5.2 SDRAM Timing Parameter 1 Register

This is a single register used to set SDRAM timing parameters (see Table 6-8). It is access-

controlled and writable by only the Master Context, Context_0 (see Chapter 11, Access-

Controlled Registers).

Table 6-8. SDRAM Timing Parameter 1 Register

31ï24 23ï20 19ï16 15ï0

Reserved INI_PREC INI_REFT REF_INTV

ï RW RW RW

Note: Reset value is 0x00480820.

 Bits [31ï24]ðReserved

 Bits [23ï20]ðINI_PREC Ÿ Initial pre-charge times. The default value of this field is 4.

 Bits [19ï16]ðINI_REFT Ÿ Initial refresh times. The default value of this field is 8.

 Bits [15ï0]ðREF_INTV Ÿ Refresh interval. One refresh command should be issued if

the refresh counter equals the refresh interval.

6.5.3 SDRAM Configuration 0 Register

This is a single register used to set SDRAM configuration parameters (see Table 6-9). It is access-

controlled and writable by only the Master Context, Context_0 (see Chapter 11, Access-

Controlled Registers).

Table 6-9. SDRAM Configuration 0 Register

31ï17 16 15ï14 13ï12 11 10ï8 7ï6 5ï4 3ï0

Reserved MA2T Reserved DDW Reserved DSZ Reserved MBW BNKSIZE

ï RW ï RW ï RW ï RW RW

Note: Reset value is 0x00001226.

 Bits [31ï17]ðReserved

 Bit [16]ðMA2T Ÿ Double Memory Address Cycle Enable. This register is used to

control if the address should be validated before the SDRAM command is issued. This bit

should always be set to ñ0ò for the fido1100.

 Bits [15ï14]ðReserved

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 141 of 313 1-888-824-4184

®

 Bits [13ï12]ðDDW Ÿ SDRAM Data Width. This register indicates the data width of

each individual SDRAM Module. This indicates the width of a single SDRAM device

attached to fido1100.

ï 00ð 4 device

ï 01ð 8 device

ï 10ð 16 device

ï 11ðReserved

 Bit [11]ðReserved

 Bits [10ï8]ðDSZ Ÿ SDRAM Size. This register indicates the size of each individual

SDRAM Module (in bits). This indicates the size of a single SDRAM device attached to

the fido1100:

ï 000ð16 Mbit

ï 001ð64 Mbit

ï 010ð128 Mbit

ï 011ð256 Mbit

ï 100ð512 Mbit

ï 101ðReserved

ï 110ðReserved

ï 111ðReserved

 Bits [7ï6]ðReserved

 Bits [5ï4]ðMBW Ÿ Memory Bus Width. This register indicates the bus size of external

memory bus. This is width of the fido1100 external data bus connected to the SDRAM

devices:

ï 00ðMemory data width is 8

ï 01ðMemory data width is 16

ï 10ðReserved

ï 11ðReserved

 Bits [3ï0]ðBNKSIZE Ÿ Bank Size. The following encoding shows the size of bank (in

bytes). Bank sizes other than the following values may cause an unexpected error. This

identifies the total size of the memories attached to a single Chip Select:

ï 0000ðReserved

ï 0001ð2 Mbyte

ï 0010ð4 Mbyte

ï 0011ð8 Mbyte

ï 0100ð16 Mbyte

ï 0101ð32 Mbyte

ï 0110ð64 Mbyte

ï 0111ð128 Mbyte

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 142 of 313 1-888-824-4184

®

ï 1000ð256 Mbyte

ï 1001ðReserved

ï 1010ðReserved

ï 1011ðReserved

ï 1100ðReserved

ï 1101ðReserved

ï 1110ðReserved

ï 1111ðReserved

6.5.4 SDRAM Configuration 1 Register

This is a single register used to set SDRAM configuration parameters (see Table 6-10). It is

access-controlled and writable by only the Master Context, Context_0 (see Chapter 11, Access-

Controlled Registers).

Table 6-10. SDRAM Configuration 1 Register

31-5 4 3 2 1 0

Reserved IPREC IREF ISMR PWDN SREF

ï RW RW RW RW RW

Note: Reset value is 0x00000000.

 Bits [31ï5]ðReserved

 Bit [4]ðIPREC Ÿ Initial pre-charge start flag. If IPREC is set to ñ1,ò the SDRAM

controller will start pre-charging if SDRAM stays in the IDLE state. This flag will be

cleared to zero if the executed pre-charge command is equal to the specified initial pre-

charge count. Writing 0 to this bit has no affect.

 Bit [3]ðIREF Ÿ Initial refresh start flag. If IREF is set to ñ1,ò refresh controller will start

sending refresh command to control engine until initial refresh time. This flag will be

cleared if the executed refresh command is equal to the specified initial refresh time.

Writing 0 to this bit has no affect.

 Bit [2]ðISMR Ÿ Start set-mode-register. If ISMR is set to ñ1,ò refresh controller will

send a set-mode-register command to control engine. This bit will be cleared if set-mode-

register command is done. Writing 0 to this bit has no affect.

 Bit [1]ðPWDN Ÿ Power-down operation mode. If this parameter is set to ñ1,ò SDRAM

controller will pull CKE low to suspend the clock while SDRAM controller is in IDLE

state. That is, all queued write buffers in SDRAM controller are cleared and all SDRAM

banks are pre-charged.

ï The power-down command will cause the controller to clear the CKE line during a no

op command. CKE will remain low while in power-down mode.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 143 of 313 1-888-824-4184

®

ï After entering power-down mode, the PWDN bit will remain set until a write to the

register clears it.

ï While in power-down mode, the controller will continue to perform refreshes and

read/write operations will also be allowed. CKE will go high to perform the operation,

and then will go low to put memory back into power-down mode.

 Bit [0]ðSREF Ÿ Self-refresh mode. If this parameter is set to ñ1,ò SDRAM controller

will send self-refresh-entry command to SDRAM while controller is in IDLE state (all

write buffers queued are cleared and all SDRAM banks are pre-charged). After entering

into self-refresh state, this bit will be cleared to 0. Setting this bit to 0 has no effect.

ï The self-refresh command will cause the controller to clear the CKE line during a

refresh command. CKE will remain low while in self-refresh mode.

ï While in self-refresh mode, the controller will not make any bus requests nor perform

any refresh commands. However data in the SDRAM memory will be retained (the

SDRAM memory will be performing internal self-refreshes).

ï Any read or write operation will cause the controller to leave self-refresh mode. CKE

will go back high, and the controller will resume refresh operations.

6.5.5 SDRAM External Bank Configuration Register_N (where N=0..7)

There are eight registers used to set SDRAM bank configuration parameters, one per chip select

region (see Table 6-11). They are access-controlled and writable by only the Master Context,

Context_0 (see Chapter 11, Access-Controlled Registers).

Table 6-11. SDRAM External Bank Configuration Register

31ï13 12 11ï0

Reserved BNK_EN BNK_BASE

ï RW RW

Note: Reset value is:
SDRAM_Ext_Bank_0 Ÿ 0x1800
SDRAM_Ext_Bank_1 Ÿ 0x0820
SDRAM_Ext_Bank_2 Ÿ 0x0840
SDRAM_Ext_Bank_3 Ÿ 0x0860
SDRAM_Ext_Bank_4 Ÿ 0x0880
SDRAM_Ext_Bank_5 Ÿ 0x08A0
SDRAM_Ext_Bank_6 Ÿ 0x08C0
SDRAM_Ext_Bank_7 Ÿ 0x08E0

The default values of these registers puts the Bank base address in the ñlittle-endianò memory space.

 Bits [31ï13]ðReserved

 Bit [12]ðBNK_EN Ÿ Bank enable flag.

ï 0ðBank is disabled

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 144 of 313 1-888-824-4184

®

ï 1ðBank is enabled

Note 1: External Bank 0 is enabled by default. All others are disabled

Note 2: The SDRAM Enable flag in the associated External Bus Chip Select

Register must be set.

 Bits [11ï0]ðBNK_BASE Ÿ 12-bit base address of external bank. This field is equivalent

to Bits [31ï20] of the fido1100 address bus.

6.6 Startup and Operation of SDRAM Controller

The External Data bus can be configured at either 8 or 16 bits wide; however, the SDRAM

devices must fill the entire width. If using a 16-bit-wide bus, at least one 16 device, two 8

devices, or four 4 devices must be used.

There is only one SDRAM Controller in the fido1100. However, the controller can be set up to

control eight separate Chip Selects (via the SDRAM External Bank Configuration Registers).

There is a one-to-one interaction between the SDRAM External Banks and the External Bus Chip

Selects. External Bank 0 will operate via Chip Select 0; External Bank 1 will operate via Chip

Select 1, etc.

The settings for Timing 0, Timing 1, and Config 0 Registers are global; hence, the SDRAM

devices attached to each chip select must have the exact same timing and configuration. CS1

cannot be configured as a 16-bit-wide bus with a single 16 8-Mbyte device and have CS2

configured as an 8-bit-wide bus with two 4 devices (see Setups for SDRAM Controller Examples

provided in this section).

6.6.1 Initial Setups

1. Wait for MEMCLK to stabilize. MEMCLK is clocked at the same rate as the system

clock.

2. Wait 200 µsecs for the SDRAM device to stabilize (this delay may be less depending upon

the SDRAM device requirements).

3. Ensure that Bit [10] of the Clock Mask Register is set to ñ0.ò This will turn on the master

clock to the SDRAM Controller.

4. Set the External Bus Chip Select Register for the chip select connected to the SDRAM

Device.

ï SDRAM Enable must be set to ñ1.ò

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 145 of 313 1-888-824-4184

®

ï Output Enable must be set to ñ1.ò If configuring CS4-CS7, the Mode Select must be

set to ñ0.ò

ï The Base Address Bits [31ï20] must be set to the base address of the SDRAM memory

attached to this chip select.

o Base Address Bits [19ï12] must be set to ñ0.ò

o The 12-bit-value set in Bits [31ï20] must match exactly with Bits [11ï0] of the

appropriate SDRAM External Bank Configuration Register BNK_BASE field.

ï The Size field must be properly set to the size of the SDRAM memory attached to this

chip select.

5. Set SDRAM Timing Parameter 0 Register.

ï The TRP, TRCD, TRF, and TWR fields represent the number of clocks that must occur

to meet the timing requirements of the SDRAM Device. The data sheet for the

SDRAM device must be evaluated against the clock speed that the fido1100 is running

at (see Example 1 and Example 2 below).

ï The TCL field (number of clocks before data is ready from SDRAM Device) can be set

to ñ2ò for most SDRAMS. Because fido1100 max clock is 66 MHz, and most SDRAM

are set for 100 MHz, CAS Latency can be set to ñ2.ò

6. Set SDRAM Timing Parameter 1 Register.

ï The INI_PREC field identifies the number of initial pre-charges that will occur before

setting the SDRAM Device Mode Register. The SDRAM Device should be consulted

for the appropriate number.

ï The INI_REFT field identifies the number of initial refreshes (after the initial pre-

charges) that will occur before setting the SDRAM Device Mode Register. The

SDRAM Device should be consulted for the appropriate number.

ï The REF_INTV field should be computed by the following formula (REF_INTV =

[Tref / num_rows] * Fclk).

o TrefðThe time interval that all rows should be refreshed. Consult the SDRAM

Device data sheet.

o num_rowsðThe number of rows that the SDRAM Device contains. Consult the

SDRAM Device data sheet.

o FclkðThe frequency of the system clock.

Note: Drop any fractions and convert the value to hex for the register.

7. Set SDRAM Configuration 0 Register.

ï The MA2T field must be set to ñ0.ò

ï The MBW field identifies the width of the External Data bus connected to the SDRAM

Devices. The fido1100 supports only 8- and 16-bit-wide buses.

ï The DDW field identifies the width of a single SDRAM Device. The external data bus

must be fully populated (i.e., a 16-bit-wide bus requires either one 16 device, two 8

devices, or four 4 devices).

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 146 of 313 1-888-824-4184

®

ï The DSZ field identifies the size (in bits) of a single SDRAM device connected to the

Data Bus.

o This represents the size of a single 4, 8, or 16 device.

o The options are 16, 64, 128, 256, and 512 Mbits

ï The BNKSIZE field identifies the size (in bytes) of all SDRAM devices tied to a single

External Bank.

o If MBWð16 bits, and there are four 4 64 Mbit, the bank size would be

32 Mbytes.

o If MBWð16 bits, and there are two 8 16 Mbit, the bank size would be 4 Mbytes.

o If MBWð8 bits, and there are 1 x8 64Mbit, the bank size would be 8 Mbytes.

Note: This register affects all external banks. The exact same External Bus

Width and types of SDRAM devices must be the same on each external bank.

Only the base address can be changed for an external bank.

8. Set SDRAM Configuration 1 Register (Command Register)

ï To initialize the SDRAM devices:

o Set the IPREC Bit to cause the number of initial Pre-charges (identified by

INI_PREC in Timing Parameter 1) to occur.

o Set the IPREC Bit to cause the number of initial Refreshes (identified by

INI_REFT in Timing Parameter 1) to occur. These will occur after the initial Pre-

charges.

o Set the ISMR Bit to cause the SDRAM Controller to set the SDRAM device Mode

register. The Mode register will be set to Sequential burst length of 4 and the CAS

Latency will be set the same as the TCL field of Timing Parameter 0.

ï All 3 bits (IPREC, IREF, and ISMR) can be set at the same time.

ï After setting the bits, read the register until it equals zero.

Note: A short delay (e.g., 4 NOP commands) may be needed before and after

writing to this register to allow the setting of the previous registers to

propagate inside of the SDRAM Controller.

Warning: After performing the ISMR function, do not perform another as indeterminate results

may occur.

9. Set SDRAM External Bank Configuration Register(s)

ï Each External Bank corresponds to an external chip select.

ï The BNK_BASE field identifies the upper 12 bits of the base address of the SDRAM

Device(s) on the Chip Select. The address space of the SDRAM Device(s) is defined

in the BNKSIZE field of Configuration Register 0.

ï The BNK_EN will enable/disable accesses to the SDRAM memory.

10. SDRAM is now ready for normal operations

ï Refresh Commands to the SDRAM devices should occur at the correct interval

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 147 of 313 1-888-824-4184

®

ï Transfers between the SDRAM Device and the SDRAM Controller will always occur

via a 4 -column burst.

ï Bursts via the DMA system will perform multiple 4-column bursts

6.6.2 Setups for SDRAM Controller Examples

Micron SDRAM Models MT48LC16M4A2-75 (64-Mbit 4 device), MT48LC8M8A2-75

(64-Mbit 8 device), MT48LC4M16A2-75 (64-Mbit 16 device)

 4096 rows, must be refreshed every 64 milliseconds.

 tRPð20 ns min

 tRCDð20 ns min

 tRFCð66 ns min (Auto Refresh Period)

 tWRð1 Clk + 7.5 ns min

 Startup requires one initial pre-charge and two initial refreshes

6.6.2.1 SDRAM Controller Example 1

A 66-MHz; 16-bit Data Bus, single 16 device:

 Timing 0ð0x00022522 // TRP=2, TRCD=2, TRF=5, TWR=2, TCL=2.

ï Clock is 15ns period

o Need two clocks to meet TRP, TRCD, and TWR.

o Need five clocks to meet TRF (tRFC) period

o Because it is running slow compared to SDRAM, the device can use CAS Latency

(TCL) = 2.

 Timing 1ð0x00120407//INI_PREC=1, INI_REFT=2, REF_INTV=0x0407.

ï REF_INTV = 64 msec/4096 66 MHz = 1031 = 0x0407

 Config 0ð0x00002113//MA2T = 0, DDW = 16 device, dsz = 64 Mbit, mbw = 16 bit,

bnksz = 8 Mbyte.

ï Single, 64-Mbit device = 8 Mbytes

6.6.2.2 SDRAM Controller Example 2

A 22-MHz, 8-bit Data Bus, two 4 devices:

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 148 of 313 1-888-824-4184

®

 Timing 0ð0x00011112//TRP=1, TRCD=1, TRF=1, TWR=1, TCL=2

ï Clock is 45ns period

o Need 1 clock to meet TRP, TRCD, and TWR.

o Need 1 clock to meet TRF (tRFC) period

o Because it is running slow compared to SDRAM, the device can use CAS Latency

(TCL) = 2

 Timing 1ð0x00120157//INI_PREC=1, INI_REFT=2, REF_INTV=0x0157

ï REF_INTV = 64 msec/4096 22 MHz = 343.8 = 0x0157

 Config 0ð0x00000104//MA2T=0, DDW= 4 device, dsz = 64 Mbit, mbw = 8 bit,

bnksz = 16 Mbyte

ï Two, 64-Mbit devices = 16 Mbytes

6.7 SDRAM Module Types Address Mapping (16-Bit Bus Width)

Table 6-12 provides address-mapping information for the listed SDRAM module types when

using a 16-bit bus width. The ñAPò is Auto Pre-Charge.

Table 6-12. SDRAM Module Types Address Mapping for 16-Bit Bus Width

Module
Type

Total Bank
Size

Number of
SDRAM
Devices

Bank
Select

Row
Address

Column Address

Rows Cols 12 11 10 9 8 7 6 5 4 3 2 1 0

16M (16) 2 Mbytes 1 9 20ï10 ï ï AP ï ï 8 7 6 5 4 3 2 1 2048 256

16M (8) 4 Mbytes 2 10 21ï11 ï ï AP ï 9 8 7 6 5 4 3 2 1 2048 512

16M (4) 8 Mbytes 4 11 22ï12 ï ï AP 10 9 8 7 6 5 4 3 2 1 2048 1024

64M (16) 8 Mbytes 1 10, 9 22ï11 ï ï AP ï ï 8 7 6 5 4 3 2 1 4096 256

64M (8) 16 Mbytes 2 11, 10 23ï12 ï ï AP ï 9 8 7 6 5 4 3 2 1 4096 512

64M (4) 32 Mbytes 4 12, 11 24ï13 ï ï AP 10 9 8 7 6 5 4 3 2 1 4096 1024

128M (16) 16 Mbytes 1 11, 10 23ï12 ï ï AP ï 9 8 7 6 5 4 3 2 1 4096 512

128M (8) 32 Mbytes 2 12, 11 24ï13 ï ï AP 10 9 8 7 6 5 4 3 2 1 4096 1024

128M (4) 64 Mbytes 4 13, 12 25ï14 ï 11 AP 10 9 8 7 6 5 4 3 2 1 4096 2048

256M (16) 32 Mbytes 1 11, 10 24ï12 ï ï AP ï 9 8 7 6 5 4 3 2 1 8196 512

256M (8) 64 Mbytes 2 12, 11 25ï13 ï ï AP 10 9 8 7 6 5 4 3 2 1 8196 1024

256M (4) 128 Mbytes 4 13, 12 26ï14 ï 11 AP 10 9 8 7 6 5 4 3 2 1 8196 2048

512M (16) 64 Mbytes 1 12, 11 25ï13 ï ï AP 10 9 8 7 6 5 4 3 2 1 8196 2048

512M (8) 128 Mbytes 2 13, 12 26ï14 ï 11 AP 10 9 8 7 6 5 4 3 2 1 8196 4096

512M (4) 256 Mbytes 4 14, 13 27ï15 ï 11 AP 10 9 8 7 6 5 4 3 2 1 8196 8192

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 149 of 313 1-888-824-4184

®

6.8 SDRAM Module Types Address Mapping (8-Bit Bus Width)

Table 6-13 provides address-mapping information for the listed SDRAM module types when

using an 8-bit bus width. The ñAPò is Auto Pre-Charge.

Table 6-13. SDRAM Module Types Address Mapping for 8-bit Bus Width

Module
Type

Total Bank
Size

Number of
SDRAM
Devices

Bank
Select

Row
Address

Column Address

Rows Cols 12 11 10 9 8 7 6 5 4 3 2 1 0

16M (8) 2 Mbytes 1 9 20ï10 ï ï AP ï 8 7 6 5 4 3 2 1 0 2048 512

16M (4) 4 Mbytes 2 10 21ï11 ï ï AP 9 8 7 6 5 4 3 2 1 0 2048 1024

64M (8) 8 Mbytes 1 10, 9 22ï11 ï ï AP ï 8 7 6 5 4 3 2 1 0 4096 512

64M (4) 16 Mbytes 2 11, 10 23ï12 ï ï AP 9 8 7 6 5 4 3 2 1 0 4096 1024

128M (8) 16 Mbytes 1 11, 10 23ï12 ï ï AP 9 8 7 6 5 4 3 2 1 0 4096 1024

128M (4) 32 Mbytes 2 12, 11 24ï13 ï 10 AP 9 8 7 6 5 4 3 2 1 0 4096 2048

256M (8) 32 Mbytes 1 11, 10 24ï12 ï ï AP 9 8 7 6 5 4 3 2 1 0 8196 1024

256M (4) 64 Mbytes 2 12, 11 25ï13 ï 10 AP 9 8 7 6 5 4 3 2 1 0 8196 2048

512M (8) 64 Mbytes 1 12, 11 25ï13 ï 10 AP 9 8 7 6 5 4 3 2 1 0 8196 4096

512M (4) 128 Mbytes 2 13, 12 26ï14 11 10 AP 9 8 7 6 5 4 3 2 1 0 8196 8192

6.9 SDRAM External I/O Signal List

In addition to the External Bus Interface Signal List presented in Table 6-1, the hardware signals

used for SDRAM external I/O are presented in Table 6-14.

Table 6-14. SDRAM External I/O Signal List

Signal Name Type Description

RAS_N Output Row Address Strobe (active low)

CAS_N Output Column activate signal (active low)

BA_0
BA_1

Outputs Bank Enables (active low)

CKE Output Clock Enable used in conjunction with MEMCLK (active high)

6.10 External Bus Arbitration

An external bus arbitration takes place as follows:

1. External master asserts HOLDREQ_N

2. The fido1100 evaluates current internal bus priority (the higher of current context priority

and active DMA priority) versus value in External Bus Priority Register. If external bus

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 150 of 313 1-888-824-4184

®

priority is higher than internal priority, HOLDGNT_N is asserted (after the current bus

cycle completes) for the duration of the external access and all bus outputs from the

fido1100 are tri-stated.

3. External bus can then begin controlling address and data bus. The external bus master

must continue to assert HOLDREQ_N as long as it requires control of the bus.

4. The fido1100 continuously monitors the relative priorities of internal and external bus, if

internal bus priority rises higher than or equal to external bus (e.g., a higher-priority

context is enabled) then the fido1100 will deassert the HOLDGNT_N signal.

5. The fido1100 waits for the external bus master to deassert HOLDREQ_N before driving

the bus (regardless whether the external master terminated on its own time or in response

to deassertion of HOLDGNT_N).

Note 1: When the HOLDGNT_N is active, the fido1100 will tri-state the

address and data bus so that it can be externally driven.

Note 2: Even while HOLDGNT_N is active, the fido1100 execution unit will

continue to run, executing code, unless an external bus access is required by

the application, at which point the fido1100 execution will temporarily stall,

waiting for the external bus to be released.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 151 of 313 1-888-824-4184

®

7. Peripheral Management Unit

7.1 PMU

7.1.1 Overview

The Peripheral Management Unit (PMU) provides data transfers between the CPU and the UIC

using Dual-Port RAM. Dual-Port RAM (as used in this document) is a RAM that can be

simultaneously read from and written to (i.e., it has a read port and a write port). On the PMU, the

Transmit Dual-Port has a write port associated with the CPU bus and a read port associated with

the UIC bus. The Receive Dual-Port has a write port associated with the UIC bus and a read port

associated with the CPU bus. Although the CPU can read from the Transmit Dual-Port and write

to the Receive Dual-Port, these are slower than actions made in the usual direction.

The PMU can allocate a fixed set of resources (primarily transmit and receive Dual-Port RAM)

among a variable set of resources (UICs with various protocols). The PMU Dual-Port RAM is a

subset block of memory within the total fido1100 memory map. There are two channels of PMU

available for each UIC, a primary and secondary channel. If the UIC is operating a single protocol

(i.e., Ethernet), it is managed using the primary PMU channelðthe secondary channel is not used.

If the UIC is operating a dual protocol (e.g., dual UARTS, UART, and GPIO), then each protocol

uses a channel.

The PMU Dual-Port RAM is divided into two sections; one for transmit-buffer allocations and one

for receive-buffer allocations (see Figures 7-1 and 7-2). Transmit memory can be allocated a

maximum buffer size of 1K 32 bits. Receive memory can be allocated a maximum buffer size

of 2K 32 bits. Both receive and transmit memory sections are addressed using 32-bit (long-

word) accesses and can be used for single-channel operation (one UIC only) or allocated among

the four channels for multiple UIC operations.

7.1.1.1 PMU Register Overview

The PMU contains eight sets of registers that are used to configure transmit and receive buffers for

the four UIC primary and secondary channels. PMU registers will be referred to by a generic

naming system. For each set of PMU registers, the register names are preceded by ñChxy,ò where

the ñxò corresponds to which UIC the PMU is associated with and the ñyò corresponds to either

the primary or secondary PMU channel (ñAò for primary and ñBò for secondary). For example,

ñCh0Aò would signify UIC 0 using a PMU primary channel.

 Control and status registers

ï PMUChxy_ControlðUsed to configure PMU channel operational mode and

enable/disable PMU channel interrupts.

ï PMUChxy_StatusðRead-only register that contains bits for interrupt status and state

of PMU channel.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 152 of 313 1-888-824-4184

®

Figure 7-1. Diagram of the Dual-Port Receive RAM

32-Bit Bus

8 8 8 8

.

.

.

.

.

.

16 16

Dual Port
Receive

Frame Buffer
Memory

Advancing Addresses

Receive write pointer

Receive buffer end

16-Bit Bus

Receive buffer start

Receive read pointer

8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8

8 8
8 8

8 8

8

UIC Primary
Channel

8 8

8

UIC Secondary
Channel

Primary UIC
Receive FIFO

Secondary UIC
Receive FIFO

The CPU can read or write
32, 16, or 8 bits at a time.

fido

3. Always 16-bit word
aligned.

4. Advances by 2 when UIC
 writes a 16-bit word to Rx
 frame buffer.

Or

1. Always 32-bit word aligned.

2. Advances by 4 when CPU
 reads from Rx FIFO data
 register in PMU.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 153 of 313 1-888-824-4184

®

Figure 7-2. Diagram of the Dual-Port Transmit RAM

32-Bit Bus

8 8 8 8

.

.

.

.

.

.

16 16

Dual Port
Transmit

Frame Buffer
Memory

Advancing Addresses

Transmit read pointer

Transmit buffer end

16-Bit Bus

Transfer buffer start

Transmit write pointer

8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8

8 8
8 8

8 8

8

UIC Primary
Channel

8 8

8

UIC Secondary
Channel

Primary UIC
Transmit FIFO

Secondary UIC
Transmit FIFO

The CPU can read or write
32, 16, or 8 bits at a time.

fido

3. Always 16-bit word aligned.

4. Advances by 2 when UIC
 reads a 16-bit word to Rx
 frame buffer.

Or

1. Always 32-bit word aligned.

2. Advances by 4 when CPU
 writes a 32-bit long word to
 the Tx FIFO data register in
 PMU.
 register in PMU.

Flexible Input Deterministic Output (fido®) User Guide
32-Bit Real-Time Communications Controller May 6, 2010

 IA221080723-06 http://www.Innovasic.com
 UNCONTROLLED WHEN PRINTED OR COPIED Customer Support:
 Page 154 of 313 1-888-824-4184

®

 Transmit Registers

ï PMUChxy_XmitFBufStartðStart address of channelôs transmit frame buffer in PMU

Transmit RAM.

ï PMUChxy_XmitFBufEndðEnding address of channelôs transmit frame buffer in PMU

Transmit RAM.

ï PMUChxy_XmitFBufWrPtrðAddress in transmit frame buffer where next long-word

written to PMUChxy_XmitData register will be stored.

ï PMUChxy_XmitFBufRdPtrðAddress in transmit frame buffer where next data to be

transferred to UIC will be read from.

ï PMUChxy_XmitDataðTransmits FIFO write head when PMU channel is in FIFO

mode. Long word written here will be stored at address pointed to by

PMUChxy_XmitFBufWrPtr.

ï PMUChxy_PckXmitSizeðNumber of bytes to transmit.

 Receive Registers

ï PMUChxy_RcvFBufStartðStart address of channelôs receive frame buffer in PMU

Receive RAM.

ï PMUChxy_RcvFBufEndðEnding address of channelôs receive frame buffer in PMU

Receive RAM.

ï PMUChxy_RcvFBufWrPtrðAddress in receive frame buffer where next data received

from UIC will be stored.

ï PMUChxy_RcvFBufRdPtrðAddress in receive frame buffer where first data received

from UIC was stored and where a read of PMUChxy_RcvData will take data from.

ï PMUChxy_RcvDataðReceives FIFO read head when PMU channel is in FIFO mode.

Long word read here will be taken from address pointed to by

PMUChxy_RcvFBufrdPtr.

ï PMUChxy_PckRcvSizeðNumber of bytes received by PMU in last packet (rounded

up to next even value).

Two modes of operation for data transfers, the FIFO or Random Access, are available between the

CPU and the PMU. The FIFO mode treats each allocated frame buffer as circular. Hardware

manages read and write pointers, providing an easy method for using circular buffers with

minimal software. Data transfer into the transmit buffer and out of the receive buffer is

