
Innovasic Semiconductor
fido1100

Application Note 110

Time and Space Partitioning
on the

fido1100 Microcontroller

Version 1.0
December 2006

 1 Version 1.0, December 2006

Table of Contents
Introduction..3
Approach...3
Preemptive Kernel ..3

Hardware Kernel Basics..4
Memory Protection Unit Basics..5
Context Timer Basics..6

Context Timer Example...7
Conclusion...8

Index of Tables
Table 1: Example Setup Table for Memory Regions..6
Table 2: Context Timing Rate Example..7

 2 Version 1.0, December 2006

Introduction
Any time that a microprocessor is used for more than one discrete function or application, the
problem of developing and verifying applications becomes dramatically more complex and expensive.
Whether there are intentional interactions between the applications or not, a change to one
application generally means some degree of regression testing on all of the others. In a high reliability
environment this problem is even more severe.

The problem of one application impinging on another is also exacerbated when there are applications
with varying degrees of reliability or safety requirements, or when various developers are responsible
for different applications (e.g. the OEM develops a set of basic applications, the end user adds some
additional programming).

Approach
One approach to mitigating these issues is to use what is commonly referred to as 'time and space
partitioning'. Space partitioning refers to some sort of hardware-enforced limitations on memory
access (memory being the 'space') to keep the various applications from inadvertently corrupting each
other's data. Time partitioning refers to a mechanism that guarantees that each application will get
some predetermined portion of processor throughput.

The usual mechanism for implementing a time and space partitioned system is to use one of a handful
of operating systems that support it. They use a Memory Management Unit (MMU) to provide space
partitioning, and typically provide time partitioning by using a time-sliced kernel, with each slice of
time preallocated to a particular application. While these operating systems can be very effective in
high-end systems, when cost is a factor they have drawbacks:

● The operating systems are expensive.

● Require high end processors with a full MMU and the throughput/clock speed to handle the
additional overhead.

● Overhead incurred with time partitioning is substantial, requiring more throughput.

● Typically, all time is allocated, no ability to recover slack time for background tasks.

Preemptive Kernel
The fido1100 includes a priority-based preemptive scheduler in hardware which supports up to 5
'contexts'. In addition to the basic scheduler, the processor includes a system timer to support
periodic task operation, a Memory Protection Unit (MPU) to control memory accesses on a per-
context basis, and a set of timers that can be used to guarantee that no context uses more execution
time than is allocated to it. The remainder of this application note will describe how these features
can be used to provide time and space partitioning on a low-cost microcontroller.

 3 Version 1.0, December 2006

Hardware Kernel Basics

The fido1100 supports up to 5 hardware contexts. Each context includes user registers, program
counter, etc., context-specific timers, and MPU controls. Contexts are numbered 0 through 4, where
context 0 is also known as the master context. The master context (context 0) differs from the
others in the following ways:

● Context 0 always has the highest priority – if it is ready to run, it will run.
● Context 0 has write access to a number of configuration registers and fields of registers that

can not be written by any other context.
● Context 0 handles certain classes of critical events (double bus fault, double MPU fault, etc.).
● Context 0 does not have a claim register (hardware semaphore).
● The fido1100 TRAPX instruction traps to context 0.

Because the master context has special privileges and serves as the arbiter of last resort for critical
failures in other contexts, it is typically reserved for the most critical code in a given application (or
reserved to only manage critical failures after setup is complete). The only distinction between
context 0 and the other contexts is that a second-level priority is based on their context number.
That is, if two contexts are set to the same priority, the lower-numbered context gets the processor.

Each context has an associated context control register. This register has two fields: State and
Priority, these are described below.

All contexts are always in one of three states:
● Halted : Context is not ready to run – this is the state of all contexts except the master

following a reset, it can be put back into the halted state by the master context (a write to the
context control register), or by experiencing a critical fault (double bus fault, double MPU
fault, context timer timeout).

● Waiting : The context is not ready to run, it can be made ready to run by any interrupt event
that is associated with that context. A context can transition itself into this state, from the
Ready state, by using the fido1100 SLEEP instruction.

● Ready : The context is ready to run, if it is the highest priority context in this state, then it will
take the processor and execute.

Each context has an associated priority. Priority is a number from 0-7, where 7 is the highest priority.
Note that context 0's context control register will always return a 7 in this field. There are other
elements of the fido1100 that can dramatically impact code execution performance, these are the
Direct Memory Access (DMA) controller and the external bus controller interface. Code execution is
slowed when the DMA controller is active because they are generally sharing the same bus, when an
external bus controller has been granted the bus all external accesses by the fido1100 are halted,
again causing a dramatic slowdown in execution rate.

For this reason, these other elements (the DMA controller and external master interface) are
provided priority fields. For example, if the DMA controller has a higher priority than the currently
executing process, then the DMA controller will typically use the majority of bus bandwidth. If
however, a higher priority context goes active, then the DMA engine stops processing the original

 4 Version 1.0, December 2006

context and allows the processor to execute at full speed. A similar scheme exists for the external
bus master interface.

When defining a system that uses time partitioning and DMA or an external bus master, their impact
on performance must be taken into account and priorities set appropriately.

Another feature of the fido1100 that supports time and space partitioning is the association of
interrupts with specific contexts. Any interrupt (external interrupts, I/O interrupts, timer interrupts,
etc.) can be associated with any context. Thus, any time spent processing a given interrupt is
accounted to the appropriate context; any failures that occur in that processing (e.g. Illegal memory
access, stack overflow, etc.) are isolated to that context.

Memory Protection Unit Basics

The Memory Protection Unit (MPU) provides resources to define up to sixteen regions of memory
with various attributes (Read/Write, Read-only, No Access). Multiple sets of rules can be applied to a
single range of memory. For example, memory can be designated Read/Write for one context and
Read-only for all other contexts.

The sixteen regions of memory are not context-specific. Each context has a 16-bit register that
defines which set of rules apply to it (this register, like most configuration registers, can only be
written by the master context). A region can be sized from 64 bytes to Giga bytes. The following
table shows an example setup. Notice block 0 – because it covers the entire address space and is not
assigned to any particular context, it will cause an MPU fault if a context accesses an area not included
in a block assigned to it. Without that entry, any part of the address range that is not covered by any
MPU block is read/write accessible to any context.

A typical implementation would define an MPU handler in each context that logs an error (“this
context made an illegal access to this memory location ...”) then trap to the master context.
Alternatively, the program could try to recover within that context (or the master context can re-
start the faulted context from scratch). If a context goes way out of bounds (e.g. its stack pointer runs
outside the bounds defined by the MPU) it will generally cause a double fault (for example, if the stack
goes out of bounds and causes an MPU fault, the fault will double up when the exception processing
tries to stack the processor state). This double fault will trap to the master context which can handle
the problem (e.g. re-start the faulting application).

 5 Version 1.0, December 2006

MPU
Block

Address Range Description Rules

15 Spare Not Enabled

14 0x010XXXXX - 0x010XXXXX Context Z I/O space Context Z read/write

13 0x010XXXXX - 0x010XXXXX Context Y I/O space Context Y read/write

12 0x010A0XXX - 0x010A0XXX Context X I/O space Context X read/write

11 0x01004000 - 0x01005FFF Context 1 fast RAM Context 1 Read/Write

10 0x01002000 - 0x01003FFF Context 4 fast RAM Context 4 Read/Write

9 0x01000000 - 0x01001FFF Context 3 fast RAM (on-chip) Context 3 Read/Write

8 0x00300000 - 0x0030FFFF Context 3,4 shared Context 3 Read/Write,
Context 4 Read-only

7 0x00280000 - 0x002FFFFF Context 4 Local RAM Context 4 Read/Write

6 0x00240000 - 0x0027FFFF Context 3 Local RAM Context 3 Read/Write

5 0x00230000 - 0x0023FFFF Context 2 Local RAM Context 2 Read/Write

4 0x00220000 - 0x0022FFFF Context 1 Local RAM Context 1 Read/Write

3 0x00210000 - 0x0021FFFF Context 0 Local RAM Context 0 Read/Write

2 0x00200000 - 0x0020FFFF Global RAM Read/Write, all contexts

1 0x00100000 - 0x001FFFFF Code (flash) Read-only – all contexts

0 0x00000000 - 0x7FFFFFFF Catch any accesses outside of
defined region

No context

Table 1: Example Setup Table for Memory Regions

Context Timer Basics

The fido1100 includes a set of timers that measure run-time on a per-context basis. That is, when a
context is executing, its associated context timer is incremented once for each 16 system clock
periods. Each context also has a max time register, when the context timer is equal to the max time
register, the corresponding context is halted and a fault is generated to the master context. This
setup allows the programmer to define how much processor time a given context is allowed.

 6 Version 1.0, December 2006

Context Timer Example
Suppose that processing in a set of applications is defined to operate at the following rates:

Context Period Priority Max
Time

Comments

0 sporadic 7 10 msec Handles interrupts and faults – no particular frequency

1 sporadic 5 15 msec Also a sporadic interrupt handler

2 10 msec 4 30 msec 100 Hz periodic processing

3 30 msec 2 20 msec 33.3 Hz periodic processing

4 80 msec 1 40 msec 12.5 Hz periodic processing

5 background 0 N/A uses any available processor time. (at least 240 – 115 =
125 msec)

Table 2: Context Timing Rate Example

A typical approach might be to make the highest-frequency context the highest priority of periodic
contexts.

Given the periods defined above in Table 2, you would choose an overall period that works out
evenly with all of the periodic processes, in this case 240 msec (24 iterations of context 2, 8
iterations of context 3, and 3 iterations of context 4). Next break up the available 240 msec of run-
time into the portions allowed for each context (in the Max Time column).

Now you guarantee that if one of the higher priority contexts crashes, the lower priority contexts
will still be able to execute. For example, it may be that the application running at 33.3 Hz is of less
consequence in terms of criticality than the application running at 12.5 Hz, or even the background
processes. By using the context timers to guarantee time partitioning you can guarantee that the
lower-priority applications will get an appropriate amount of processor time.

For this to work, the context timers must be cleared periodically (in this example, every 240 msec).
This can be accomplished in software, by a write to the context timer clear register from the master
context. It can also be accomplished with no software intervention by programming the System Timer
to have a 240 msec period on one of its channels with automatic context timer clear enabled. When
using the system timer to clear the individual context timers, the system can enforce strict time
limitations on any set of contexts with no periodic software overhead.

 7 Version 1.0, December 2006

Conclusion
After the MPU and context timers have been set up, applications running in different contexts can be
guaranteed not to interfere with each other in terms throughput (hogging the processor) or memory
(stepping on each other's data or I/O) with no software overhead beyond initializing the timers and
MPU. This provides the following:

● Higher reliability.

● Reduced verification costs.

● Mix software certified to various levels.

● Reduced system debug time (problems contained in a single application).

Thank You

Thank you for taking the time to review this application note. We hope you have found the information
included in this application useful and east to understand. Please feel free to contact the Innovasic Support
Team any time with questions or comments.

Innovasic Support Team
3737 Princeton NE
Suite 130
Albuquerque, NM, 87107

(505) 883-5263

support@innovasic.com
http://www.innovasic.com

 8 Version 1.0, December 2006

